跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝孟甫
研究生(外文):Meng-Fu Hsieh
論文名稱:整合用藥處方因子與診斷因子概念以提升風險校正模型預測力
論文名稱(外文):Refining Diagnosis-based Risk Adjustment Model with Prescription Information
指導教授:張睿詒張睿詒引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫療機構管理研究所
學門:商業及管理學門
學類:醫管學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:40
中文關鍵詞:風險校正用藥處方因子
外文關鍵詞:risk adjustmentPCGTASGprescribed drug adjusters
相關次數:
  • 被引用被引用:1
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景與目的:藉風險校正合理設定個人的支付金額,可以避免論人計酬制度所帶來就醫公平與風險選擇的問題。風險校正模型端賴良好的風險校正因子來從事未來醫療費用的推估、合理反映個人醫療需求。由於診斷和處方用藥資訊包含豐富的臨床訊息,以診斷因子和用藥處方因子進行校正已逐漸成為國際研究的主要方向。我國早期風險校正研究結果顯示國內之診斷因子,具有相當之預測力,較具發展性。我國醫療費用結構,藥品費用約佔門診醫療支出的1/3,而門診藥費的成長,又以慢性病藥費的增加為主。故本研究欲發展整合用藥處方與診斷資訊之風險校正模式,期望提供前瞻式預算分配參考。
材料與方法:本研究利用全民健保投保對象之基本資料,以及特約醫療院所2000年與2001年對於西醫醫療費用所申報之診斷資料與用藥處方資料,建構健康狀態風險計價模式。運用先前利用因子、PCG因子、我國學者所發展TSAG與TPIPDCG因子,與本研究自行發展的診斷與用藥處方資訊整合因子,共建立九個風險校正模型。並以R2和預測比評估其對個人醫療費用及特定群體醫療費用之預測力。
結果:運用較多的醫療資訊,可以使風險校正模型具有更好的預測能力。各模型中,以具有TSAG因子與診斷與用藥處方整合因子表現最好;整合因子的預測表現略優於TSAG因子。整合因子相較單以門診診斷或是門診用藥處方,的確具有更佳之預測力。以特定慢性疾病分類來看,整合因子在某些慢性病類別上,有較佳的預測比。
結論:整合慢性病用藥與診斷資訊,確可更進一步提升風險校正模型預測能力。同時在特定之慢性病族群上,也具有更精確之預測比,有助於風險選擇的抑制。由於並未針對本土之醫療型態,修正國外用藥處方因子,未來應可針對我國用藥型態修正,並與次診斷資訊予以整合。
Objective:Using risk adjustment to set personal premium reasonably can avoid the problem of risk selection and ensure the equity of access to care. By appropriate risk adjusters, a risk adjustment method can not only predict personal medical expense but also reasonably reflect medical need. Diagnosis–based adjusters and prescribed drugs adjusters have attracted the research attention for their rich clinical messages. Results of early studies in Taiwan demonstrated outstanding predictability and potentiality. Reviewing medical expense structure in Taiwan, one-third of outpatient medical expense is spent on prescription drugs, and chronic disease prescriptions account for the main portion in drug expenses. This study intends to refine diagnostic risk adjusters with prescription information to improve predictability of risk adjustment models in Taiwan.
Data and methods:With detailed enrollment data, medical expense data, diagnostic and prescription data of contracted institution in 2000 and 2001, this study constructed health-based risk assessment models. Using PCG adjusters, Taiwan’s outpatient and inpatient diagnosis-based adjusters, and the adjusters combining diagnostic and prescription data, this study constructed nine risk adjustment models and evaluated the predictions to medical expenses of individuals and specific subgroups.
Principal findings:More clinical information improves the predictability. In all models, the models with the TSAGs and the adjuster combining diagnostic and prescription data outperformed other methods, and the combined adjusters slightly outperform TASG adjusters, Compared with either diagnostic or prescription information, combined information improved the predictability of risk adjustment models. In particular, in specific chronic disease groups, the combined adjusters demonstrated a better predictive ratio.
Conclusion:Using prescription information to refine diagnosis-based risk by splitting it into refined cost group can improve the risk adjustment model not only in all models but also predictive ratio of specific chronic disease group, which helped to avoid risk selection. This study didn’t modify prescribed drug adjusters by local condition. Future research on modifying by local prescription habits and combining with secondary diagnostic information is suggested.
目 錄

致謝••••••••••••••••••••••••••••••••••••••••i
中文摘要••••••••••••••••••••••••••••••••••••ii
英文摘要••••••••••••••••••••••••••••••••••••iii
目錄••••••••••••••••••••••••••••••••••••••••v
表目錄••••••••••••••••••••••••••••••••••••••vi
第一章 緒論•••••••••••••••••••••••••••••••••1
第二章 文獻探討••••••••••••••••••••••••••••••4
第三章 研究方法••••••••••••••••••••••••••••••11
第四章 研究結果••••••••••••••••••••••••••••••15
第五章 討論•••••••••••••••••••••••••••••••••19
參考文獻•••••••••••••••••••••••••••••••••••••24
表格•••••••••••••••••••••••••••••••••••••••••29

表目錄
表一、三個版本CDS的比較•••••••••••••••••••••••••29
表二、用藥因子風險校正研究•••••••••••••••••••••••29
表三、不同版本Rx model的比較•••••••••••••••••••••31
表四、研究樣本年齡性別分層比較•••••••••••••••••••32
表五、研究樣本使用各項服務比例與金額••••••••••••••33
表六、PCG用藥處方群組分類示例與樣本數分佈••••••••••••••••••••••••••••••••••34
表七、TSAG用藥處方群組分類示例與樣本數分佈•••••••••••••••••••••••••••••••35
表八、TPIPDCG分類示例與樣本數分佈•••••••••••••••••••••••••••••••••••••••••••••••••36
表九、整合因子分類示例與樣本數分佈••••••••••••••••••••••••••••••••••••••••••••••••37
表十、風險計價模式預測力分析•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••39
表十一、風險計價模式預測比分析••••••••••••••••••••••••••••••••••••••••••••••••••••••••40
中文部分
中央健保局,全民健康保險統計,歷年資料。
張睿詒、江東亮:風險校正:健康保險市場的效率與公平之關鍵。中華公共衛生雜誌1998;17(5):373-80。
張睿詒、賴秋伶:風險校正因子:論人計酬醫療費用預測之基礎。台灣衛誌2004;23(2):91-9。
蔡偉德、羅紀瓊:「論人計酬」之支付標準探討。經濟論文2000;28:231-61。
謝其政:利用全民健康保險資料建立風險計價模式之初探。臺灣大學醫療機構管理研究所碩士論文。
賴秋伶:利用診斷資料建構風險計價模式。臺灣大學醫療機構管理研究所碩士論文。
高雅慧:以ATC分類探討全民健保藥品之利用與分配,行政院衛生署八十八年度下半年及八十九年度委託研究計畫。

英文部分

Anderson, G.F., Reinhardt, U.E., U.E., Hussey, et al. It’s the price, stupid: why the United State is so different from other country. Health Affairs 2003;22(3): 89-105.
Berndt, E. R. Pharmaceuticals in U.S. health care: determinant of quantity and price, Journal of Economic Perspectives 2002;16(4): 3-21.
Chang R.E., Lin W.D., Chiang T.L., et al., Healthcare utilization patterns and risk adjustment under Taiwan''s national health insurance system, Journal of Formosan Medical Association 2002;101: 52-9.
Chang R.E., Lai C.L. Using diagnosis-based risk adjustment models to predict individual healthcare expenditure under the national health insurance system in Taiwan.( Forthcoming in Journal of Formosan Medical Association)
Clark D.O., von Kroff M., Sounder K. et al., A chronic disease score with empirically derived weights, Medical Care 1995;33 (8):783-95.
Cumming R.B., Cameron B.A., A comparative analysis of claims-based method of health risk assessment for commercial population, A Research study sponsored by the society of Actuaries 2002, Park Nicollet Institute Health.
Dunn, D.L., Application of health risk adjustment: what can be learned from experience of data? Inquiry 1998;35:132-47.
Epstein, A.M., Cumella E.J., Capitation payment: using predictor of medical utilization to adjust rates. Health Care Financing Review 1998;10(1):51-69.
Ellis, R.P., Ash A., Refinement to the diagnostic cost group (DCG) model. Inquiry 1995;32:418-429.
Ellis, R.P., Pope, G.C., Lezzoni, L.I.,et al. Diagnosis-based risk adjustment for Medicare capitation payments. Health Care Financing Review 1996; 17(3):101-27.
Fishman P.A., Goodman M.J., Meenan R.T. et al., Risk adjustment using automated ambulatory pharmacy data: the RxRisk model, Medical Care 2003;41(1):84-99
Iezzoni,I. Accessing quality using administrative data, Annals of Internal Medicine 1997;127(8):666-674.
Johnson R.E, Hornbrook M.C., Nichols G.A., Replicating the chronic disease score from automated pharmacy data, Journal of Clinical Epidemiology 1994;47(10):1191-9.
Johnson R.E, Hornbrook M.C., Nichols G.A., Replicating the chronic disease score from automated pharmacy data, J Clinical Epidemiology 1994;47(10):1191-9.
Gilmer T. Kronick R. Fishman P. et al., The Medicaid Rx Model: pharmacy-based risk adjustment for public programs, Medical Care 2001;39(11):1188-1202.
Lamers L.M., Pharmacy cost group: A risk-adjuster for capitation payments based on the use of prescribed drugs, Medical Care 1999;37(8):824-30.
Lamers L.M., Health-based risk adjustment: Is inpatient and outpatient diagnostic information sufficient? Inquiry 2001;38:423-31.
Lammers L.M., Health-based risk adjustment: Improving the pharmacy-based cost group model to reduce gaming possibilities, Europe Journal of Health Economics 2003;4:107-14.
Lamers L.M.,van Vliet, The Pharmacy-based cost group model: validating and adjusting the classification of medications for chronic condition to the Dutch situation, Health Policy 2004 (68):113-121.
Lin W.D., Chang R.E. Hsieh C.J. et al, The development of a risk-adjusted capitation model based on principal inpatient diagnoses in Taiwan. Journal of Formosan Medical Association 2003; 102: 637-43.
Malone D.C., Billups S.J.Valuck R.J.,et al. Development of a chronic disease indicator score using a veterans affairs medical center medication database, Journal of Clinical Epidemiology 1999; 52(6):551-7.
Newhouse J.P., Medical care cost: how much welfare loss, Journal of Economic Perspectives 1992;6(3): 3-21.
Newhouse J.P. Risk adjustment: where are we now? Inquiry 1998; 35(2):122-31.
Putman K.G., Biust D.S.M, Fishman P.et al. , Chronic disease score as a predictor of hospitalization, Epidemiology 2002;13(2):340-6.
Pope G.C., Adamache K.W., Ash A.S., et al., Evaluating alternative risk adjuster for Medicare. Health Care Finance Review 1998;20: 109-29.
Pope G.C., Ellis R.P., Ash A.S., et al, Principal inpatient diagnostic cost group model for Medicare risk adjustment, Health Care Financing Review 2000;21(3):93-119.
Pope G.C., Kautter J., Ellis R.P., et al., Risk adjustment of Medicare capitation payments using the CMS-HCC model, Health Care Financing Review 2004;25(4):119-41.
Roblin, D. W., Patient case mix measurement using outpatient drug dispense data, Medical Care Quarterly 1994;2(2):38-47.
Roblin, D. W., Physician profiling using outpatient pharmacy data as a source for case mix measurement and risk adjustment , Journal of Ambulatory Care Management 1998;21(4):68-84.
Rice C., Richardson J., Nakahata P.,et al., Pharmacy-based risk adjustment: a guidebook for state, working paper, Center for Health Care Strategy, Inc, 2001.
Sloan K.L., Sales A.E., Liu C.F., et al., Construction and characteristics of the RxRisk-V: A VA-adapted pharmacy-based case-mix instrument, Medical Care 2003;41(6):761-774.
Sales A.E., Liu E.F., Sloan K.L., et al, Predicting costs of care using a pharmacy-based measure risk adjustment in a veteran population. Medical Care 2003;41(6):753-60.
van de Ven W.P.M.M., Ellis R.P. Risk adjustment in competitive health plan markets. In: Culyer A.J., Newhouse J.P., eds. Handbook of Health Economics. Amsterdam: Elsevier Science, 2000:755-845.
Von Korff, Wanger E.H., Sauders K., A Chronic disease from automated pharmacy data, Journal of Clinical Epidemiology 1992;45(2):197-203.
van de Ven W.P.M.M., Rene C.J.A., Lammer L.M., Health-adjusted premium subsidies in the Netherlands, Health Affair2004;23(3):45-55.
Weiner, J.P. and Abrams, C. The Johns Hopkins ACG case-mix system documentation & application manual. The Johns Hopkins University School of Hygiene and Public Health, 2000.
WHO Collaborating Centre for Drug Statistics Methodology. Anatomical therapeutic Chemical (ATC) Classification Index Available at: http:// http://www.whocc.no/atcddd/. Oslo: WHO Collaborating Centre for Drug Statistics Methodology.1996
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top