跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴雅君
研究生(外文):Ya-Chun Tai
論文名稱:光動力療法與高溫熱療對於熱休克蛋白基因表現之影響
論文名稱(外文):The Effect of Photodynamic Therapy and Hyperthermia on Heat Shock Protein Gene Expression
指導教授:謝銘鈞謝銘鈞引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:28
中文關鍵詞:熱休克蛋白溫熱療動力療法
外文關鍵詞:heat shock proteinhyperthermiaphotodynamic therapy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熱休克蛋白早期是由於溫度刺激的研究所發現的,隨著陸陸續續的研究發現熱休克蛋白是一群維持細胞生理機能的保護性蛋白質,並且也涉及細胞凋亡的機制。而熱休克蛋白平時就會表現來維持基本的細胞生化功能,在遇到溫度、氧化壓力、化學性毒素、紫外光或特定波長光線刺激時,熱休克蛋白會大量表現來穩定細胞的生理現象來保護細胞。
高溫熱療運用在各種腫瘤治療已經有二十多年的歷史,而熱療所引發的細胞反應包括核糖核酸(RNA)及去氧核糖核酸(DNA)的生成、免疫反應、細胞骨架重組、細胞凋亡及熱休克蛋白的表現。除此之外,光動力療法由於造成單態氧的生成,使細胞受到氧化壓力,也會引發熱休克蛋白的表現以及細胞凋亡。
在本研究中,我們利用光動力療法與高溫熱療刺激細胞中熱休克蛋白的表現,觀察細胞中熱休克蛋白RNA與DNA以及熱休克蛋白質量的表現,比較不同溫度、不同劑量、不同時間以及此兩種不同治療的方式,對於細胞生化合成的影響。我們的研究結果顯示,高溫熱療與光動力療法都能引發熱休克蛋白的表現,而高溫熱寮的熱休克蛋白表現呈現溫度依存性(temperature-dependant),並且以43℃、30分鐘的熱療為最佳條件。熱療後的蛋白質表現量隨著時間增加,但以HSP70較明顯,而熱療對於HSP60的表現則效果不佳。
在光動力療法方面,熱休克蛋白的表現也呈現劑量依存性(dose-dependant)。隨著時間的增加,光動力療法誘發的熱休克蛋白量也逐漸升高,達到高峰後漸漸減低回到正常表現量。相較於HSP60與HSP27而言,HSP70在較短的時間表現量即增加,但是也在較短的時間內降低。此外,對於HSP60的誘發,光動力療法效果較高溫熱療好。
以上研究使我們對高溫熱療與光動力療法對於熱休克蛋白的調控影響有更近一步的了解,幫助我們未來研究系統的設計上能有更好的改進。
Heat shock proteins (HSPs) serve as the chaperones, antiaggregants and cytoprotectants in both normal and stress conditions [Matthew et al. 2004]. Under the stress stimuli, such as the temperature, chemical toxins, heavy metals and also UV or specific light illumination, HSPs will be induced to protect living cell from damage.
Both hyperthermia and Photodynamic therapy (PDT) can induce cellular apoptosis and the expression of heat shock proteins as well. It is noticeable that several families of heat shock proteins are involved in cell apoptosis pathway [Steven et al, 2000].
In this study, we investigated the gene expression of RNA and protein level of HSPs after the treatment of PDT and hyperthermia. We discovered that the expression of HSPs induced by hyperthermia was temperature-dependant, especially for HSP70, and the optimal condition was 43℃ for 30 minutes. The RNA and protein expression of HSPs increased in concordance with the duration after hyperthermia. HSP70 had strongest expression after hyperthermia. Hyperthermia, however, did not change HSP60 expression significantly.
For PDT, the RNA expression of HSPs was slightly increased by different irradiation energy. And the protein expression of HSPs was show to be dose-dependant. Similar to the study of hyperthermia, the expression of HSPs increased after PDT and reached the peak at 12 hours (2 hours for RNA level). HSP70 was induced more rapidly and began to decrease after 9 hours. On the other hand, HSP60 and HSP27 remained relative stable all the time. Generally PDT was more effective than hyperthermia in inducing HSP60 expression.
The result of this study revealed the effect on PDT and hyperthermia of gene expression and helped us to understand the regulation of HSP expression.
CONTENT
中文摘要 1
ABSTRACT 2
INTRODUCITON 3
MATERIALS AND METHODS 6
◆ Cell culture
◆ Hyperthermia
◆ Photodynamic therapy
◆ SDS-Polyacryamide Gel Electrophoresis and Western blotting
◆ Image quantity analysis
RERULTS 9
◆ The RNA expression of HSPs of HeLa cells at different temperature after hyperthermia
◆ The proteins expression of HSPs of HeLa cells at different temperatures after hyperthermia
◆ The RNA expression of HSPs of HeLa cells at different time periods after hyperthermia
◆ The protein expression of HSPs of HeLa cells at different time periods after hyperthermia
◆ The RNA expression of HSPs of HeLa cells at different illumination times for PDT

◆ The protein expression of HSPs of HeLa cells at different illumination times for PDT
◆ The RNA expression of HSPs of HeLa cells at different time period after PDT
◆ The protein expression of HSPs of HeLa cells at different time period after PDT

FIGURES
Fig. 1 The diagram illustrate the proposed mechanism of cell injure by reactive oxygen species. 4
Fig. 2 The scheme of the speculative pathway in apoptosis. 5
Fig. 3 The agarose analysis of RT-PCR after hyperthermia at different temperature. 14
Fig. 4 The statistical graph of quantified image data for Fig. 3. 14
Fig. 5 The Western blotting of the HSPs expression after hyperthermia at different temperature. 15
Fig. 6 The statistical graph of quantified image data for Fig. 5 15
Fig. 7 The agarose analysis of RT-PCR after 43℃ hyperthermia at different time periods. 16
Fig. 8 The statistical graph of quantified image data for Fig. 7. 16
Fig. 9 The Western blotting of the HSPs expression after hyperthermia at different time periods. 17
Fig. 10 The statistical graph of quantified image data for Fig. 9. 17
Fig. 11 The agarose analysis of RT-PCR 2 hours after PDT with different illumination times. 18
Fig. 12 The statistical graph of quantified image data for Fig. 11. 18
Fig. 13 The Western blotting of the HSPs expression 4hours after PDT with different illumination times. 19
Fig. 14 The statistical graph of quantified image data for Fig. 13. 19
Fig. 15 The agarose analysis of RT-PCR after PDT at different time periods. 20
Fig. 16 The statistical graph of quantified image data for Fig. 15. 20
Fig. 17 The Western blotting of the HSPs expression after PDT for different time periods. 21
Fig. 18 The statistical graph of quantified image data for Fig. 17. 21

DISCUSSION 22
REFERENCES 26
References

A Curnow, SG Bown. The role of reperfusion injury in photodynamic therapy with
5-aminolaevulinic acid – a study on normal rat colon. British Journal of Cancer (2002) 86, 989 – 992

Akira Ikari, Mika Nakano. Up-regulation of Sodium-dependent Glucose Transporter by Interaction with Heat Shock Protein 70. Journal of biological chemistry.Vol. 277, No. 36, Issue of September 6, pp. 33338–33343, 2002

A. Meanoret, D.Chaillot, Hsp70, an immunological actor playing with the intracellular self under oxidative stress. INT. J. HYPERTHERMIA, 2002, VOL. 18, NO. 6, 490-505

Anne Marie R. Krueger Naug. Hyperthermic Induction of the 27-kDa
Heat Shock Protein (Hsp27) in Neuroglia and Neurons of the Rat Central Nervous System. The Journal of Comparative Neurology. 428:495–510 (2000)

Aleksandra Cvoro,Aleksandra Korac. Intracellular localization of constitutive and inducible heat shock protein 70 in rat liver after in vivo heat stress. Molecular and Cellular Biochemistry 265: 27–35, (2004)

Barbara Lelj-Garolla A , Grant Mauk. Self-association of a Small Heat Shock Protein. J. Mol. Biol. 345, 631–642 (2005)

Blase Billack, Dianee Heck, Induction of cyclooxygenase-2 by heat shock protein 60
in macrophages and endothelial cells. Am J Physiol Cell Physiol 283: C1267–C1277, 2002.

Caroline A. Dobbin, Nicholas C. Heat Shock Protein 70 Is a Potential Virulence Factor in Murine Toxoplasma Infection Via Immunomodulation of Host
NF-_B and Nitric Oxide. The Journal of Immunology, 2002, 169: 958–965.

G.Multhoff. Review Activation of natural killer cells by heat shock protein 70
Int. J. Hyperthermia.2002, VOL. 18, NO. 6, 576±585

Ikuo Takahashi, Yasunori Emi. Effects of Hyperthermia on the Cytoskeleton and Focal Adhesion Proteins in a Human Thyroid Carcinoma Cell Line. Surgery 131:S78-84.(2002)

Jean-Yves Matroule, Chris M Carthy. Mechanism of colon cancer cell apoptosis mediated by pyropheophorbide-amethylester photosensitization. Oncogene (2001) 20, 4070 ~4084

Jens J. Hansen , Peter Bross. Genomic structure of the human mitochondrial chaperonin genes:HSP60 and HSP10are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum Genet 112 :71–77 (2003)

John G. Hanlon, Katherine Adams. Induction of Hsp60 by Photofrin-mediated photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 64 (2001) 55–61

Juergen Frank, Christine Lambert. Intensified Oxidative And Nitrosative Stress Following Combined Ala-based Photodynamic Therapy And Local Hyperthermia In Rat Tumors. Int. J. Cancer: 107, 941–948 (2003)

Matthew J. Barrett, Vinessa Alones. Mitochondria-Derived Oxidative Stress Induces a Heat Shock Protein Response. Journal of Neuroscience Research 78:420–429 (2004)

M. Kamaruddin, T. Kroetsch. Immunolocalization of heat shock protein 70 in bovine spermatozoa. Andrologia 36, 327–334 (2004)

Rosella Cicconi, Andrea Delpino. Expression of 60 kDa heat shock protein (Hsp60) on plasma membrane of Daudi cells. Molecular and Cellular Biochemistry 259: 1–7,(2004)

S. Gupta; A.A. Knowlton. Cytosolic Heat Shock Protein 60, Hypoxia, and Apoptosis. Circulation. 2002;106:2727-2733.

Shih-Horng Huang, Kai-Jian Yang, Jiahn-ChunWu, King-Jeng Chang, and Seu-MeiWang. Effects of Hyperthermia on the Cytoskeleton and Focal Adhesion Proteins in a Human Thyroid Carcinoma Cell Line. Journal of Cellular Biochemistry 75:327–337 (1999)

Song-Nan Lin, Kiyoshi Ayada. Helicobacter pyloriheat-shock protein 60 induces
production of the pro-inflammatory cytokine IL8 in monocytic cells. Journal of Medical Microbiology. (2005), 54, 225–233

Stewart F, Baas P, Star W (1998) What does photodynamic therapy have to
offer radiation oncologists (or their cancer patients) Radiother Oncol 48:
233 – 248

Steven H. Kang, Maxwell A. Fung. Heat shock protein 27 is expressed in normal and malignant human melanocytes in vivo. Journal of Cutaneous Pathology. 31: 665–671(2004)

Steven Xanthoudakis, Donald W. Nicholson. Heat-shock proteins as death determinants. Nature Cell Biology; vol2: E163-165 (2000)

Takeshi Sasara , Dasa Cizkova. Spinal heat shock protein (70) expression: effect of spinal ischemia, hyperthermia (42 .C)/hypothermia (27 .C), NMDA receptor activation and potassium evoked depolarization on the induction. Neurochemistry International. 44 (2004) 53–64
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 林文程,《中共對台政策與台海兩岸關係》,國防政策評論,第1卷第4期,2001年夏季,頁90-112。
2. 周煦,《新世紀的中(共)美關係》,國際關係學報,第15期,2000年12月,頁69-90。
3. 周煦,《美俄戰略夥伴關係》,美歐月刊,第9卷第7期,1994年7月,頁27-32。
4. 周煦,《台灣關係法的回顧與檢討》, 理論與政策,第48期,1998年12月,頁11-27
5. 林正義,《「八一七公報」後美國對台軍售政策》,歐美研究,第23卷第3期,1993年9月,頁27-60
6. 周力行,《2003年美國亞太戰略對台海安全環境之影響》,全球政治評論,2003年第二期,頁1-27。
7. 李登科,《五十年的『中』、美、蘇(俄)關係》,中國大陸研究,第42卷,第10期,1999年10月,44-67。
8. 李志強,《美國與中國大陸的經貿關係》,美歐月刊,第九卷第10期,1994年10月,頁12-22。
9. 吳玲君,《中共APEC策略與角色的轉變:新現實主義的解析》,問題與研究,第40卷第3期,2001年5-6月,頁1-21。
10. 石之瑜,《做為藝術的政治學-兼評建構主義的科學哲學立場》,美歐季刊,第15卷第2期,2001年夏季號,頁293-310。
11. 包宗和,《轉型中的國際體系:一九七○至一九九○》,亞洲與世界月刊,第14卷第4期,1991年4月,頁46-54。
12. 包宗和,《戰後國際政治體系之變遷》,美國月刊,第5卷第9期,1990年9月,頁4-8。
13. 王高成,《從小布希東亞之行看美國亞太戰略》,遠景基金會季刊,第3卷第3期,2002年7月,頁75-102。
14. 王高成,《柯林頓的中共經貿政策》, 美歐月刊,第11卷第2期,1996年2月,頁1-19。
15. 王昭麟,《台灣在美國亞太政策中的地位》,美國月刊,第8卷第8期,1993年8月,頁56-67。