跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/19 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐徹菖
研究生(外文):Che-Chang Hsu
論文名稱:利用工業機械手臂發展關節生物力學測試系統之研究
論文名稱(外文):Development of a Robot-Based Testing System for the Study of Joint Biomechanics
指導教授:呂東武呂東武引用關係
指導教授(外文):Tung-Wu Lu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:76
中文關鍵詞:人體關節生物力學機械手臂關節測試系統
外文關鍵詞:Human jointBiomechanicsRoboticArthrometer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
人體關節之生物力學研究通常包括評估關節勁度及內部各組織的受力分布,雖然目前已有許多方法可用以量測關節及其內部組織之力學特性,如植入感應器、關節評估儀器、電腦模擬等。但是由於人體關節運動具有多自由度,且組織有幾何及材料的非線性,因此要如何模擬人體關節實際受負載情形及運動路徑並量測到內部組織的受力分布一直是生物力學領域中一大挑戰。本研究之目的係以工業用機械手臂為基礎發展一套關節測試系統,並透過電腦模擬先行建立一穩定且快速的控制方法,再整合至關節測試系統之控制介面,以進行關節生物力學之研究。
此關節測試系統係利用機械手臂來控制關節的六個自由度運動,同時在機械手臂末端效應器上安裝六軸力規以推算取得關節受力,並自行開發一控制介面加以統整系統之軟、硬體以利控制。本研究除了關節測試系統的架設外,亦利用一三維膝關節模型進行控制方法之電腦模擬,並整合至關節測試系統之控制介面,以提供系統更穩定且快速的控制程序。
藉由膝關節模型之電腦模擬與測試系統之動物實驗,以比較三種控制方法之穩定度與速度,已成功建立一穩定且快速之控制方法。並由動物實驗的結果驗證關節測試系統及控制方法之可行性。
此系統在生物力學的應用方面主要有兩大功能。第一,此系統可以量得關節在力量控制下的運動軌跡,觀點近似於臨床上的理學檢查。第二,此系統亦可執行重複關節運動路徑,並同時量得該運動路徑下的關節受力,進而利用力學的疊加定理求得關節內部組織的原位力。因此,以機械手臂發展關節測試系統以精確量測關節之運動學及力動學資料,將有助於了解關節的勁度表現及內部組織在關節運動中的功能與貢獻。
Joint biomechanics often aims at determining the joint stiffness and the contribution of the soft tissues in terms of load and strain. Many methodologies have been applied to measure the mechanical properties of joints and soft tissues, e.g. implanted transducer, arthrometer, computer modelling. Nevertheless, it remains difficult to simulate the loading conditions applied to the joints since joint motion is multi-degree-of-freedom and joint is geometrically and materially nonlinear. The purpose of this study is to develop a Robot-based Joint Testing System(RJTS)and integrate a stable and fast control method established in computer simulation into the RJTS.
The robotic manipulator can control the 6-DOF joint motion accurately and combine a 6-axis load cell mounted on the end effector of robot to measure the loads. In order to integrate the RJTS, the control methods developed in computer simulation were integrated into the RJTS interface coded in Visual Basic to perform the 6-DOF position/force-moment control.
The stability and speed of three control methods were compared in computer simulation and animal experiment. Moreover, the integrated RJTS interface can perform a reliable 5-DOF AP translation test, and those results can be used to validate the feasibility and reliability of the control methods and RJTS.
To measure the path of joint motion under a specific loading condition and to reproduce a path combining the measurement of simultaneous loads are the two main functions of the RJTS. Since RJTS is capable of measuring the kinematic and kinetic data of joints accurately and the in situ force of the sectioned soft tissue by the principle of superposition, which is helpful to measure the joint stiffness and understand the function and mechanical contribution of soft tissues.
中文摘要 i
英文摘要 ii
目錄 iii
表目錄 v
圖目錄 vi
第壹章 簡介 1
第一節 研究動機 1
第二節 膝關節之功能解剖構造 2
第三節 文獻回顧 6
一、 關節勁度之評估 6
二、 量測韌帶受力的方法 8
三、 機械手臂/六軸力規測試系統 9
第四節 研究目的 11
第貳章 實驗設備與材料 13
第一節 硬體 13
第二節 軟體 19
一、 系統控制介面 19
二、 膝關節電腦模型 20
第三節 膝關節試件 21
第參章 控制理論與實驗流程 23
第一節 座標系統之定義 23
第二節 膝關節運動及關節角度、位移之定義 26
第三節 關節的位置控制 28
一、 局部座標系統微小運動之數學推導 29
二、 局部座標系統經微小運動後之齊次轉換矩陣 32
三、 關節微小運動之控制 33
第四節 關節的力量控制 34
一、 機器人學理論之應用 35
二、 關節力量之轉換 37
三、 順從矩陣之決定以控制關節力量 37
第五節 關節位置和力量的混合控制 40
第六節 不同控制方法之介紹與比較 40
一、 混合式控制 42
二、 交替式控制 43
三、 混合式控制加力量控制 44
第七節 實驗步驟 45
第肆章 結果與討論 46
第一節 電腦模擬控制方法之結果與比較 46
一、 力量控制之可行性 46
二、 關節中性位置之決定 48
三、 三種控制方法之結果比較 49
四、 關節力量控制下之前拉測試軌跡 52
第二節 動物實驗之結果 55
一、 關節中性位置之決定 55
二、 三種控制方法之比較 56
三、 關節力量控制下之前拉測試軌跡 60
第三節 討論 60
第伍章 總結 62
第一節 結論 62
第二節 未來方向 63
附錄A、雅可比轉換矩陣之推導 65
參考文獻 73
Abramowitch, S. D., Papageorgiou, C. D., Debski, R. E., Clineff, T. D. and Woo, S. L., 2003. A biomechanical and histological evaluation of the structure and function of the healing medial collateral ligament in a goat model. Knee Surgery, Sports Traumatology, Arthroscopy 11, 155-162.

Allen, C. R., Wong, E. K., Livesay, G. A., Sakane, M., Fu, F. H. and Woo, S. L., 2000. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. Journal of Orthopaedic Research 18, 109-115.

Berns, G. S., Hull, M. L. and Patterson, H. A., 1990. Implementation of a five degree of freedom automated system to determine knee flexibility in vitro. Journal of Biomechanical Engineering 112, 392-400.

Beynnon, B. D. and Fleming, B. C., 1998. Anterior cruciate ligament strain in-vivo: a review of previous work. Journal of Biomechanics 31, 519-525.

Bollen, S., 2000. Epidemiology of knee injuries: diagnosis and triage. British Journal of Sports Medicine 34, 227-228.

Debski, R. E., Sakone, M., Woo, S. L., Wong, E. K., Fu, F. H. and Warner, J. J., 1999. Contribution of the passive properties of the rotator cuff to glenohumeral stability during anterior-posterior loading. Journal of Shoulder & Elbow Surgery 8, 324-329.

Fleming, B. C., Brattbakk, B., Peura, G. D., Badger, G. J. and Beynnon, B. D., 2002. Measurement of anterior-posterior knee laxity: a comparison of three techniques. Journal of Orthopaedic Research 20, 421-426.

Fleming, B. C., Peura, G. D. and Beynnon, B. D., 2000. Factors influencing the output of an implantable force transducer. Journal of Biomechanics 33, 889-893.

Fujie, H., Livesay, G. A., Fujita, M. and Woo, S. L., 1996. Forces and moments in six-DOF at the human knee joint: mathematical description for control. Journal of Biomechanics 29, 1577-1585.

Fujie, H., Mabuchi, K., Woo, S. L., Livesay, G. A., Arai, S. and Tsukamoto, Y., 1993. The use of robotics technology to study human joint kinematics: a new methodology. Journal of Biomechanical Engineering 115, 211-217.

Grood, E. S. and Suntay, W. J., 1983. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. Journal of Biomechanical Engineering 105, 136-144.

Hall, G. W., Crandall, J. R., Carmines, D. V. and Hale, J. E., 1999. Rate-independent characteristics of an arthroscopically implantable force probe in the human achilles tendon. Journal of Biomechanics 32, 203-207.

Herzog, W., Archambault, J. M., Leonard, T. R. and Nguyen, H. K., 1996. Evaluation of the implantable force transducer for chronic tendon-force recordings. Journal of Biomechanics 29, 103-109.

Holden, J. P., Grood, E. S. and Cummings, J. F., 1995. Factors affecting sensitivity of a transducer for measuring anterior cruciate ligament force. Journal of Biomechanics 28, 99-102.

Hollis, J. M., 1995. A six-degree-of-freedom test system for the study of joint mechanics and ligament forces. Journal of Biomechanical Engineering 117, 383-389.

Hung, C.-F. (2003) Development of a 3-D Computer Graphics-Based Biomechanical Model of the Human Knee Joint. Master Thesis, National Taiwan University Press, Taipei.

Kanamori, A., Woo, S. L., Ma, C. B., Zeminski, J., Rudy, T. W., Li, G. and Livesay, G. A., 2000. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy 16, 633-639.

Kerkhoffs, G. M., Blankevoort, L., Schreurs, A. W., Jaspers, J. E. and van Dijk, C. N., 2002. An instrumented, dynamic test for anterior laxity of the ankle joint complex. Journal of Biomechanics 35, 1665-1670.

Li, G., Gil, J., Kanamori, A. and Woo, S. L., 1999. A validated three-dimensional computational model of a human knee joint. Journal of Biomechanical Engineering 121, 657-662.

Li, G., Most, E., DeFrate, L. E., Suggs, J. F., Gill, T. J. and Rubash, H. E., 2004. Effect of the posterior cruciate ligament on posterior stability of the knee in high flexion. Journal of Biomechanics 37, 779-783.

Liu, W., Siegler, S. and Techner, L., 2001. Quantitative measurement of ankle passive flexibility using an arthrometer on sprained ankles. Clinical Biomechanics 16, 237-244.

Livesay, G. A., Rudy, T. W., Woo, S. L., Runco, T. J., Sakane, M., Li, G. and Fu, F. H., 1997. Evaluation of the effect of joint constraints on the in situ force distribution in the anterior cruciate ligament. Journal of Orthopaedic Research 15, 278-284.

Maffulli, N., Binfield, P. M. and King, J. B., 2003. Articular cartilage lesions in the symptomatic anterior cruciate ligament-deficient knee. Arthroscopy 19, 685-690, 2003 Sep.

Mangaleshkar, S. R., Wildin, C., Oni, O. O. and Howard, L., 1998. The effect of knee flexion angle on knee stiffness values obtained using the Leicester arthrometer.[erratum appears in Injury 1999 Mar;30(2):155]. Injury 29, 685-687.

Moore, K. L. and Dalley, A. F., 1999, Clinical oriented anatomy. Lipponcott Williams & Wilkins, Philadelphia.

Papageorgiou, C. D., Gil, J. E., Kanamori, A., Fenwick, J. A., Woo, S. L. and Fu, F. H., 2001. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. American Journal of Sports Medicine 29, 226-231.

Paul, R. P., 1981, Robot Manipulators: Mathematics, Programming, And Control; TheComputer Control of Robot Manipulators.

Ravary, B., Pourcelot, P., Bortolussi, C., Konieczka, S. and Crevier-Denoix, N., 2004. Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clinical Biomechanics. 19(5) 19, 433-447.

Rudy, T. W., Livesay, G. A., Woo, S. L. and Fu, F. H., 1996. A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of Biomechanics 29, 1357-1360.

Sakane, M., Fox, R. J., Woo, S. L., Livesay, G. A., Li, G. and Fu, F. H., 1997. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. Journal of Orthopaedic Research 15, 285-293.

Song, Y., Debski, R. E., Musahl, V., Thomas, M. and Woo, S. L., 2004. A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. Journal of Biomechanics 37, 383-390.

Watanabe, Y., Scyoc, A. V., Tsuda, E., Debski, R. E. and Woo, S. L., 2004. Biomechanical function of the posterior horn of the medial meniscus: a human cadaveric study. Journal of Orthopaedic Science 9, 280-284.

Woo, S. L., Chan, S. S. and Yamaji, T., 1997. Biomechanics of knee ligament healing, repair and reconstruction. Journal of Biomechanics 30, 431-439.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top