(34.239.150.57) 您好!臺灣時間:2021/04/14 22:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王格庸
研究生(外文):Ke-Yung Wang
論文名稱:豬腰椎受衝擊載荷時之減震性分析
論文名稱(外文):The Shock Absorption Analysis of Porcine Lumbar Spine
指導教授:王兆麟
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:55
中文關鍵詞:脊椎生物力學椎間盤衝擊載荷衝擊吸收
外文關鍵詞:Spinal BiomechanicsIntervertebral DiscImpact LoadingShock Absorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
椎間盤的退化常被認為是脊椎的過度受力所造成的。脊椎在生物力學上最重要的功能之一在於緩衝身體所受到的衝擊能量。臨床上對於椎間盤的退化情形,除了給予藥物上治療外,也會考慮以使用人工椎間盤作置換。然而,在高速動態載荷狀態下,椎間盤分攤載荷能量的實際情況並無法得知,迄今也鮮少文獻探討之。因此本研究的目的在於探討當脊椎受到衝擊時椎間盤對衝擊能量分佈影響以及脊椎的吸收衝擊現象。
實驗中以12個新鮮豬腰椎的三節運動元(L1~L4)作為試樣,所有周邊軟組織以及韌帶皆已被移除,而椎間盤以及關節囊等皆須完整保存。四個雙軸向加速規被安置在椎體上。測試是在以自由落體方式提供衝擊能量的儀器下進行的,此測試平台稱為連續試衝擊測試平台(CITA)。透過程式控制系統的觸發,重錘由設定高度降落,而衝擊的能量則由衝擊承受器傳遞到試樣,而試樣的頂部以及底部皆被牢固地固定在測試平台上,且頂部以及底部分別有單軸測力元以及六維測力元記錄試樣在實驗時的受力情形。這次的實驗是以改變三種衝擊能量以及兩種不同接觸時間的緩衝件的參數下進行。
試樣在受到衝擊的過程中會量測到向下壓迫的加速度(gd),隨著卸載的發生會產生向上回彈的加速度(gu),將這兩種加速度的絕對值加在一起,為整個試樣受到振動時的整體加速度(gt)。從加速度變動的趨勢來看,當脊椎受壓卸載後,向上回彈的加速度大於向下壓縮的加速度,且加速度的量值是隨著能量的增加而增加。再來,則是整個試樣的整體加速度衰減值部分,整體的衰減趨勢是會隨著位置越遠離受衝擊端而有明顯增加。也就是說,越遠離衝擊端的椎間盤,必須要提供越多的吸收衝擊能力來衰減受衝擊時的加速度以維持脊椎的穩定。
在脊椎體所量測到的加速度分佈來看,在試樣未受破壞的前提下,椎體在受壓縮時會受到限制,而向上回彈的過程中,在回復原先的變形後,若還有剩餘的動能,則衝擊承受器則會拉著試樣頂部繼續向上運動,造成軟組織的拉扯,而此情況也在實驗完成後可觀察到小面關節囊有因拉扯破壞的情形。這樣的情況也可以在衰減值的趨勢上做觀察,在原先的變形量中,壓縮與回彈時候的衰減值應相同,當試樣在過度拉扯的情況開始進行時,由於軟組織的介入,使得回彈部分的衰減值也隨之受影響而增加。
The degeneration of intervertebral discs is usually a result of abnormal load on the spine. One of the important biomechanical function of the spine is to absorb the impact energy during daily activities. Clinically, in the case of disc degeneration, besides using drugs, therapists may suggest performing disc prosthesis replacements for severely degenerated discs. However, the real condition of the impact energy shared by discs during high speed loading is still not well understood, and it is discussed in few reports. Therefore, the purpose of this study is to explore how intervertebral discs affect the distribution of impact energy and the shock absorbing phenomenon of the spine during impact loading.
Twelve fresh-frozen porcine lumbar three-motion segments (L1~L4) were used in the experiment. All passive elements including muscles and ligaments were removed. However discs, capsules, and intra-capsular structures were preserved intact. Four dual axial accelerometers were mounted on the left lateral side of each L1~L4 vertebral bodies. A “drop-tower type” impact testing apparatus was used for the testing. This testing apparatus is called the “Continuous Impact Testing Apparatus”, CITA. Triggered by a systematic program control system, the impactor drops from the set height, and the energy is transmitted to the specimen through the impounder. The top and bottom part of the specimen were firmly fixed on the CITA. There were uniaxial loadcells and six-dimensional loadcell recording the top and bottom force during impact. The parameters of the experiment were three magnitudes of impact energy and two different contact times.
The downward compressing acceleration (gd) is measured on the specimen in the process of being impacted, while an upward rebounding acceleration (gu) with the occurrence of stress-relaxation is produced. When we add both absolute values of gd and gu together, the result is the total acceleration (gt) on which the whole specimen is impacted. Judging by the varying trend of gt, the absolute value of gd in each corresponding point is smaller than that of gu. That is, the upward rebounding acceleration gu is greater than the downward compressing acceleration gd after the spine is compressed and then stress-relaxed. Moreover, the value of gt will increase according to the increase of energy. Then, as to the attenuate value of gt of the whole specimen, the whole attenuating trend is able to increase distinctly when the location is much further from the side of impact. Therefore, in order to maintain the stability of the spine, more shock-absorbing ability must be provided to attenuate the impact energy when the intervertebral disc is much further from the side of impact.
From the gt distribution measured on the intervertebral bodies, the range of compression will be limited by the prerequisite that the specimen is not destroyed. In the process of upward rebounding, if energy still remains after recovering from the previous deformation, the impounder will drag the top of the specimen and continue to move upwardly, producing a rending of soft tissue (intervertebral disc, facet joint capsule). Furthermore, we can observe that the facet joint capsule may be destroyed due to rending, after the experiment is completed. This condition can also be verified by observing the trend of attenuate value. In the original deformation, the attenuate value of compressing should be equal to that of rebounding. When the specimen enters a condition of excessive rending, the attenuate value of rebounding is partly increased on account of the intervention of the soft tissue.
第一章 序論 1
1-1前言 1
1-2 脊椎之基本構造 2
1-2-1 脊椎骨 4
1-2-2 小面關節 5
1-2-3 韌帶 6
1-2-4 椎間盤 6
1-3 脊椎的生物力學 8
1-4 文獻回顧 10
1-5 實驗目的 14
1-6 論文架構 15
第二章 實驗設備介紹 16
2-1連續式衝擊測試平台(CITA) 16
2-1-1衝擊錘 17
2-1-2衝擊承受器 17
2-1-3緩衝件 18
2-2 硬體控制系統 18
2-3 訊號量測系統 19
2-3-1各式感測器 19
2-3-2訊號放大器 20
2-3-3訊號連接器 20
2-3-4類比數位轉換卡 20
2-3-5人機介面程式 21
2-4 單軸向加速規量測系統 22
2-5 雙軸向加速規量測系統 22
2-5-1 雙軸向加速規量測原理 24
2-5-2 雙軸向加速規適用範圍 24
2-5-3 雙軸向加速規校正方法 25
第三章 實驗材料與方法 29
3-1 實驗材料 29
3-2實驗試樣準備 30
3-2-1動物試樣 30
3-2-2 標準試樣 34
3-3 實驗設計 34
3-3-1 不同的衝擊載荷條件下椎間盤對於衝擊能的緩衝特性 34
3-3-2 衰減值分析 36
第四章 實驗結果 37
4-1 不同的衝擊載荷條件下標準試樣對於衝擊能的緩衝特性 37
4-2 不同的衝擊載荷條件下椎間盤對於衝擊能的緩衝特性 42
第五章 討論與結論 48
5-1 加速度方面 48
5-2 加速度減少量與加速度衰減值方面 49
5-3 力量傳輸比率方面 50
第六章 未來展望 52
參考文獻 53
1.Praemer A, Furner S, Rice DP. Musculoskeletal conditions in the United States. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1992
2.Keith L. Moore, Arthur F. Dalley, Clinical oriented Anatomy, Fourth Edition, 1999
3.Margareta Nordin, Victor H. Frankel, Basic Biomechanics of the Musculoskeletal System, Third edition; 2001
4.A.Voloshin, L. Wosk. An in vivo study of low back pain and shock absorption in the human locomotor system, Journal of Biomechanics 1982; 15(1), pp 21-27
5.A.D. Holmes and D.W.L. Hukins, Analysis of load-relaxation in compressed segments of lumbar spine. Medical Engineer &Physics 1996;18(2) : pp 99-104
6.Adarsh Kumar, MTech, Mathew Varghese, MS, Dinesh Mohan, PhD, Puneet Mahajan, PhD, Praveen Gulati, MD, and Shashank Kale, MCh, Effect of Whole-Body Vibration on the Low Back, Spine 1999 24(23): pp 2506-2515
7.Mark D. Brown, Measurement of Cadaver Lumbar Spine Motion Segment Stiffness, Spine 2002 ; 27(9): pp 918-922
8.Andrew J.L. Walsh, Jeffery C. Lotz*, Biological response of the intervertebral disc to dynamic loading , Journal of Biomechanics 2004 ; 37 : pp 329-337
9.Gianluca Cinotti, Carlo Della Rocca, Salvatore Romeo, Franco Vittur, Renato Toffanin, and Guido Trasimeni., Degeneration Changes of Porcine Intervertebral Disc Induced by Vertebral Endplate Injuries., Spine 2005, 30(2) : pp174-180
10.Kim K., Goel V. K., Weinstein J. and Lim T., Effect of disc degeneration at one level on the adjacent level in axial mode. Spine 1991, 16(3) : pp331-335
11.Jaw-Lin Wang, Mohamad Parnianpour, Aboulfazl Shirazi-Adl , Ali-E. Engin. The dynamic response of L2/L3 motion segment in cyclic axial compressive loading. Clinical Biomechanics, 1998, 13(s1): pp s16-s25.
12.Jaw-Lin Wang, Mohamad Parnianpour , Aboulfazl Shirazi-Adl, Ali-E. Engin. Viscoelastic finite element analysis of a lumbar motion segment in combined compression and sagittal flexion – effect of loading rate Spine, 2000, 25(3): pp 310-318
13.Choon-Ki Lee, MD, Young Eun Kim, PhD, Choon-Sung Lee, MD, Young-Mi Hong, MD, Vijay K. Goel, PhD Impact Response of the Intervertebral Disc in a Finite-Element Model, Spine 2004; 25(19): pp 2431-2439
14.Li-Xi Guo, PhD, Ee-Chon Teo, PhD, Kim-Kheng Lee, MEng, Qing-Hang Zhang, MEng Vibration Characteristics of the Human Spine Under Axial Cyclic Loads: Effect of Frequency and Damping, Spine 2005; 30(6): pp 631-637
15.Thomas P. H., John P. K., Geoff R. F. and Wayne G. H., Design of an intervertebral disc prosthesis, Spine 1991, 16(6) : pp s256-s260
16.Rohlmann, A.; Bergmann, G.; Graichen, F.; Weber, U., Comparison of loads on internal spinal fixation devices measured in vitro and in vivo, Medical Engineering & Physics 1997,19(6): pp. 539-546
17.J. C. LeHuec, T. Kiaer, T. Friesem, H. Mathews, M. Liu, and L. Eisermann., Shock Absorption in Lumbar Disc Prosthesis, Journal of Spinal Disorders & Techniques 2003; 16(4), pp. 346–351
18.Christian M. Puttlitz, PhD, Marc Antoine Rousseau, MD, Zheng Xu, BS, Serena Hu, MD, Bobby K-B Tay, MD, and Jeffery C. Lotz, PhD , Intervertebral Disc Replacement Maintains Cervical Spine Kinetics, Spine 2004, 29(24) : pp 2809-2814
19.Ian A. F. Stokes, PhD, and James C. Iatridis, PhD Mechanical Conditions That Accelerate Intervertebral Disc Degeneration: Overload Versus Immobilization , Spine, 2004, 29(23): pp 2724-2732
20.Kuen-Horng Tsai, Guan-Linag Chang, Ruey-Mo Lin, Differences in mechanical response between fractured and non-fractured spines under high-speed impact., Clinical Biomechanics 1997, 12(7/8): pp 445-451
21.Dirk L. van Deursen, PhD, Chris J. Snijders, PhD, Ldsart Kingma, PhD, and Japp H. van Dieen, PhD, In vitro Torsion-induced stress distribution changes in porcine intervertebral discs. Spine 2001
22.Dan S. Pflaster, MS, Martin H. Krag, MD, Chris C. Johnson, BA, Larry D. Haugh PhD and Malcolm H. Pope, DrMedsc PhD, Effect of Test Environment on Intervertebral Disc Hydration. Spine 1997
23.李彥霖, 豬膝關節受衝擊與連續性載荷時之動力學與運動學分析. 國立台灣大學醫學工程研究所碩士論文 2002.
24.Steven A. Gard, PhD, Dudley S. Childress, PhD, What Determines the Vertical Displacement of the Body During Normal Walking? Journal of Prosthetics & Orthotics 2001, 13(3): pp. 64-67
25.J. P. Holman, Experimental Methods for Engineers., Seventh Edition, 2001
26.王栢村, 振動學. 全華科技圖書.,第二版 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔