(3.238.174.50) 您好!臺灣時間:2021/04/11 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾岱璉
研究生(外文):Tai-Lien Chung
論文名稱:生長休止基因7於細胞週期蛋白依賴型激酶5及其激動分子p35複合體之研究
論文名稱(外文):The study of Growth arrest-specific 7 Involves in Cyclin-dependent kinase 5/p35 Kinase complex
指導教授:林淑端林淑端引用關係
指導教授(外文):Sue Lin-Chao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:45
中文關鍵詞:生長休止基因七
外文關鍵詞:Gas7
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞週期蛋白依賴型激酶5(Cdk5)及其激動分子p35主要調控老鼠腦部發育的過程。近來發現,Cdk5/p35複合體位於細胞高基氏體中,並且負責液泡運送的調控,但是該分子機制尚不清楚。生長休止基因七 (Gas7)被發現大量表現在細胞生長休止階段 (G0 phase),並已知主要表現在腦部。CBP1是Gas7羧基(COOH)端的交互作用分子,且其序列和p35的交互作用分子,稱為C48,有高度的相似性,但是目前對於該交互分子---C48,的生物功能仍不了解。此篇論文主要是探討: Gas7是否會藉由CBP1和Cdk5及p35形成複合體,並且扮演維持高基氏體的正常結構並進一步調控其細胞功能,如液泡運送的角色。利用谷胱甘肽S-轉移(GST)的沉澱分析(GST pull down assay),得知Gas7無法直接與Cdk5及p35交互作用,而是必須藉由CBP1。經由海馬回初代細胞的免疫染色發現,CBP1、Gas7、Cdk5和p35都有表現在細胞高基氏體。並且在老鼠腦部的發育時期,藉由蔗糖梯度法分離高基氏體(Golgi enriched sucrose gradients),Gas7和p35會主要表現在高基氏體並和Cdk5及actin形成複合物。進一步利用定點突變蛋白VSVG-ts045-GFP蛋白運送分析,在大量表現CBP1的細胞中,會造成液泡從內質網運送到高基氏的過程有延後的現象。總結來說,Gas7及CBP1會與Cdk5及p35形成複合體,並且同樣會位於細胞高基氏體中,而CBP1似乎參與細胞液泡運送調控的機制。
Cyclin-dependent kinase 5 (Cdk5), a serine/threonine kinase, which is dependent on association with its neuronal specific activator, p35, is required for proper development of a mouse brain. Recently, the Cdk5-p35 kinase has been detected in the Golgi apparatus and is a factor in the regulation of membrane traffic, although the action of Cdk5-p35 in the Golgi apparatus is largely unclear. The growth arrest-specific 7 (Gas7) is identified in G0 phase and expressed preferentially in the brain. Gas7 C’-terminal Binding Protein, CBP1, is highly homologous with p35-interacting protein, but its biological function is not understood. Moreover, Gas7 is associated with actin assembly that is responsible for protein transport in Golgi apparatus. This study will determine the complex formation of Gas7, CBP1, p35 and Cdk5 tetra-complex, and their roles in Golgi architecture and Golgi-mediated cellular functions including vesicle transport. In protein-protein relationships, no direct interaction been detected between Gas7 and p35/Cdk5 kinase without mediation by CBP1. Preliminary results indicate that the pattern of Golgi distribution by analyzing specific Golgi markers of sucrose gradient prepared from Gas7 wild-type developing mouse brains reveals Gas7 and p35 are predominantly expressed in Golgi-enriched fractions. Moreover, the tetra-complex formation of Gas7, actins and Cdk5/p35, exists in Golgi-enriched microsomal fractions purified from the developing mouse brain. In the VSVG-ts045-GFP transport assay, CBP1 delays the vesicle transportation from the ER to the Golgi apparatus. Collectively, these results indicate that CBP1, a key component for Gas7 and p35/CDK5 complex formation, is not only predominantly expressed in the Golgi complex but also plays a role in protein trafficking.
Table of Contents..…………………………………………………………1
Abstract….……………………...…………………………………………...3
中文摘要……….……………………………………………………………..4
Introduction………………………………………………………………...5
Materials and Methods…………………………………………………...9
Subcellular fractionation……………………………………..….9
DNA constructions………….……………………………..……10
Cell culture and Transfection.……………………….………..10
Immunostaining……………….……………………….………..11
Western blot analysis…………………………………………..12
Expression and purification of proteins from E.coli………12
GST pull-down assay…………………………………………...13
Immunoprecipitation……………………………………………14
VSVG-ts045-GFP anterograde transport assay……………15
Results…………………………………………………………………….16
CBP1 is identified as the Gas7 C’-terminal binding
protein in mouse brain………………………………….……...16
Gas7 interacts with CBP1 directly in vitro…………………..17
CBP1 mediates Gas7 binding to the p25/Cdk5 kinase
in vitro…..…………………………………………………………18
Gas7, Cdk5, p35 and CBP1 are localized in the Golgi apparatus in hippocampus primary culture………………...19
Gas7, p35 and Cdk5 are expressed in the Golgi
apparatus in postnatal mouse brain....................................20
Gas7 is involved in p35/Cdk5 kinase in microsomal
fraction in vivo…………………………………………………...21
Transport of nascent protein from the ER to the Golgi apparatus is delayed in cells expressing C’-terminal domain of CBP1 …………………..………..…………………...22
Tables and Figures………………………………………………………24
Figure 1. CBP1 protein residues are highly identical with Cdk5Rap2 and C48…………...........…………………………...24
Figure 2. Gas7 directly interacts with CBP1, but not p25, p35 and Cdk5…………………………………………………….25
Figure 3. The third coiled-coil domain is Gas7-binding region in C’-terminal of CBP1…………………………………26
Figure 4. CBP1 is a mediator connecting the interaction between Gas7 and p25 or Cdk5……………………………….27
Figure 5. Among Gas7, CBP1, p35 and Cdk5 are localized
in the Golgi apparatus in the hippocampus primary culture……………………………………………………………..28
Figure 6. Gas7 and p35 are predominantly expressed in Golgi enrich sucrose gradients……………………………….29
Figure 7. Cdk5 immunoprecipitates Gas7 from a microsomal fraction.……………………………………………30
Figure 8. VSVG-ts045-GFP is delayed to transport from
the ER to the Golgi apparatus in the cells ecpressing
CBP1 proteins……………………………………………………31
Discussion………………………………………………………………..32
Reference…………………………………………………………………39
Appendix………………………………………………………………….44
Reference
Adlkofer, K., R. Martini, et al. (1995). "Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice." Nat Genet 11(3): 274-80.

Barr, F. A. and B. Short (2003). "Golgins in the structure and dynamics of the Golgi apparatus." Curr Opin Cell Biol 15(4): 405-13.

Bond, J., E. Roberts, et al. (2005). "A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size." Nat Genet 37(4): 353-5.

Borchelt, D. R., G. Thinakaran, et al. (1996). "Familial Alzheimer''s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo." Neuron 17(5): 1005-13.

Brancolini, C., S. Bottega, et al. (1992). "Gas2, a growth arrest-specific protein, is a component of the microfilament network system." J Cell Biol 117(6): 1251-61.

Brenner, D. G., S. Lin-Chao, et al. (1989). "Analysis of mammalian cell genetic regulation in situ by using retrovirus-derived "portable exons" carrying the Escherichia coli lacZ gene." Proc Natl Acad Sci U S A 86(14): 5517-21.

Cao, H., H. M. Thompson, et al. (2000). "Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin." J Cell Sci 113 (Pt 11): 1993-2002.

Chao, C. C., L. J. Su, et al. (2003). "Involvement of Gas7 in nerve growth factor-independent and dependent cell processes in PC12 cells." J Neurosci Res 74(2): 248-54.

Ching, Y. P., Z. Qi, et al. (2000). "Cloning of three novel neuronal Cdk5 activator binding proteins." Gene 242(1-2): 285-94.

Cook, D. G., M. S. Forman, et al. (1997). "Alzheimer''s A beta(1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells." Nat Med 3(9): 1021-3.

Del Sal, G., L. Collavin, et al. (1994). "Structure, function, and chromosome mapping of the growth-suppressing human homologue of the murine gas1 gene." Proc Natl Acad Sci U S A 91(5): 1848-52.
Dhavan, R. and L. H. Tsai (2001). "A decade of CDK5." Nat Rev Mol Cell Biol 2(10): 749-59.

Ehrenreich, J. H., J. J. Bergeron, et al. (1973). "Golgi fractions prepared from rat liver homogenates. I. Isolation procedure and morphological characterization." J Cell Biol 59(1): 45-72.

Fabbretti, E., P. Edomi, et al. (1995). "Apoptotic phenotype induced by overexpression of wild-type gas3/PMP22: its relation to the demyelinating peripheral neuropathy CMT1A." Genes Dev 9(15): 1846-56.

Futerman, A. H. and G. A. Banker (1996). "The economics of neurite outgrowth--the addition of new membrane to growing axons." Trends Neurosci 19(4): 144-9.

Gonatas, N. K., J. O. Gonatas, et al. (1998). "The involvement of the Golgi apparatus in the pathogenesis of amyotrophic lateral sclerosis, Alzheimer''s disease, and ricin intoxication." Histochem Cell Biol 109(5-6): 591-600.

Hartmann, T., S. C. Bieger, et al. (1997). "Distinct sites of intracellular production for Alzheimer''s disease A beta40/42 amyloid peptides." Nat Med 3(9): 1016-20.

Horton, A. C. and M. D. Ehlers (2004). "Secretory trafficking in neuronal dendrites." Nat Cell Biol 6(7): 585-91.

Howell, K. E. and G. E. Palade (1982). "Hepatic Golgi fractions resolved into membrane and content subfractions." J Cell Biol 92(3): 822-32.

Iijima, K., K. Ando, et al. (2000). "Neuron-specific phosphorylation of Alzheimer''s beta-amyloid precursor protein by cyclin-dependent kinase 5." J Neurochem 75(3): 1085-91.

Ju, Y. T., A. C. Chang, et al. (1998). "gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation." Proc Natl Acad Sci U S A 95(19): 11423-8.

Kamenetz, F., T. Tomita, et al. (2003). "APP processing and synaptic function." Neuron 37(6): 925-37.

Kesavapany, S., N. Amin, et al. (2004). "p35/cyclin-dependent kinase 5 phosphorylation of ras guanine nucleotide releasing factor 2 (RasGRF2) mediates Rac-dependent Extracellular Signal-regulated kinase 1/2 activity, altering RasGRF2 and microtubule-associated protein 1b distribution in neurons." J Neurosci 24(18): 4421-31.

Kovacs, D. M., H. J. Fausett, et al. (1996). "Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells." Nat Med 2(2): 224-9.

Lecuit, T. and F. Pilot (2003). "Developmental control of cell morphogenesis: a focus on membrane growth." Nat Cell Biol 5(2): 103-8.

Lee, K. K., A. K. Leung, et al. (2001). "Functions of the growth arrest specific 1 gene in the development of the mouse embryo." Dev Biol 234(1): 188-203.

Lee, K. Y., C. C. Helbing, et al. (1997). "Neuronal Cdc2-like kinase (Nclk) binds and phosphorylates the retinoblastoma protein." J Biol Chem 272(9): 5622-6.

Lee, K. Y., J. L. Rosales, et al. (1996). "Interaction of cyclin-dependent kinase 5 (Cdk5) and neuronal Cdk5 activator in bovine brain." J Biol Chem 271(3): 1538-43.

Lew, J., Q. Q. Huang, et al. (1994). "A brain-specific activator of cyclin-dependent kinase 5." Nature 371(6496): 423-6.

Li, R., J. Chen, et al. (1996). "Identification of Gas6 as a growth factor for human Schwann cells." J Neurosci 16(6): 2012-9.

Lih, C. J., S. N. Cohen, et al. (1996). "The platelet-derived growth factor alpha-receptor is encoded by a growth-arrest-specific (gas) gene." Proc Natl Acad Sci U S A 93(10): 4617-22.

Manfioletti, G., M. E. Ruaro, et al. (1990). "A growth arrest-specific (gas) gene codes for a membrane protein." Mol Cell Biol 10(6): 2924-30.

Mochida, G. H. and C. A. Walsh (2001). "Molecular genetics of human microcephaly." Curr Opin Neurol 14(2): 151-6.

Nehls, S., E. L. Snapp, et al. (2000). "Dynamics and retention of misfolded proteins in native ER membranes." Nat Cell Biol 2(5): 288-95.

Nelson, W. J. and C. Yeaman (2001). "Protein trafficking in the exocytic pathway of polarized epithelial cells." Trends Cell Biol 11(12): 483-6.

Paglini, G., L. Peris, et al. (2001). "The Cdk5-p35 kinase associates with the Golgi apparatus and regulates membrane traffic." EMBO Rep 2(12): 1139-44.

Paglini, G., G. Pigino, et al. (1998). "Evidence for the participation of the neuron-specific CDK5 activator P35 during laminin-enhanced axonal growth." J Neurosci 18(23): 9858-69.

Schneider, C., R. M. King, et al. (1988). "Genes specifically expressed at growth arrest of mammalian cells." Cell 54(6): 787-93.

She, B. R., G. G. Liou, et al. (2002). "Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth." Exp Cell Res 273(1): 34-44.

Shelton, S. B. and G. V. Johnson (2004). "Cyclin-dependent kinase-5 in neurodegeneration." J Neurochem 88(6): 1313-26.

Stamnes, M. (2002). "Regulating the actin cytoskeleton during vesicular transport." Curr Opin Cell Biol 14(4): 428-33.

Stephens, D. J. and R. Pepperkok (2001). "Illuminating the secretory pathway: when do we need vesicles?" J Cell Sci 114(Pt 6): 1053-9.

Storrie, B. and T. Nilsson (2002). "The Golgi apparatus: balancing new with old." Traffic 3(8): 521-9.

Tang, D., J. Yeung, et al. (1995). "An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator." J Biol Chem 270(45): 26897-903.

Tsai, L. H., I. Delalle, et al. (1994). "p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5." Nature 371(6496): 419-23.

Tsai, L. H., T. Takahashi, et al. (1993). "Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system." Development 119(4): 1029-40.

Valderrama, F., T. Babia, et al. (1998). "Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex." Eur J Cell Biol 76(1): 9-17.

Vanzo, N. F., Y. S. Li, et al. (1998). "Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome." Genes Dev 12(17): 2770-81.

Vasile, E., T. Perez, et al. (2003). "Structural integrity of the Golgi is temperature sensitive in conditional-lethal mutants with no detectable GM130." Traffic 4(4): 254-72.

Zoidl, G., S. Blass-Kampmann, et al. (1995). "Retroviral-mediated gene transfer of the peripheral myelin protein PMP22 in Schwann cells: modulation of cell growth." Embo J 14(6): 1122-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔