(35.168.111.204) 您好!臺灣時間:2020/07/04 01:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:林志威
研究生(外文):Chih-Wei Lin
論文名稱:影響活性碳濾毒罐效能因子評估研究
論文名稱(外文):Factors Affecting Charcoal Cartridge Performance
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:52
中文關鍵詞:活性碳濾毒罐微粒均勻度
外文關鍵詞:charcoalcartridgeaerosoluniformity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:356
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Charcoal cartridges are commonly used to protect against a wide range of organic vapors in the workplaces. The service life of charcoal cartridge has been found to be affected by many factors, including assault agent, concentration, temperature, humidity and flow rate through the cartridges. Therefore, a filter unit was normally placed in front of the cartridges to protect the charcoal from contamination. However, in the practical situation, organic vapors often accompany aerosol particles. Due to the air resistance caused by the filter media, the filter units equipped in the cartridge or canister are seldom “absolute filter”, especially for respirators designed for negative pressure mode. Therefore, principal objective of this work was to study the effect of aerosol loading on the breakthrough characteristics of charcoal cartridges, as a function of particle size.
A stainless holder (diameter 71.6 mm, height 25.6 mm) will be fabricated to accommodate 35.0 g of activated charcoal made of coconut shell. The charcoal powder has the BET surface area of about 1300 m2/g. Cyclohexane will be used as the assault agent. Cyclohexane vapor concentration will be controlled at 3000 ppm by passing an air flow of 15 L/min through surface of liquid cyclohexane in a jar dipped in a water bath. A flame ionization detector will be used to monitor the organic vapor concentration. A syringe pump will be used to refill the escaped cyclohexane. The relative humidity will be controlled at 50% by using a tubing pump feeding water into a needle wrapped with a heating tape. The same can of charcoal will be regenerated in a 150 C oven to remove the absorbed cyclohexane. The pressure drop across the charcoal cartridge will be monitored by using a pressure transducer, which will be calibrated against an inclined manometer. For aerosol penetration test, a constant output aerosol generator (model 3075, TSI) will be used to generate submicrometer-sized aerosols, and an ultrasonic atomizing nozzle (model 8700, Sonotek) will be used for generating micrometer-sized aerosols. An electrospray aerosol generator will be used to generate nanometer-sized particles to study the loading effect on the breakthrough characteristics of charcoal cartridge. A scanning mobility particle sizer (for aerosols < 0.7
一、摘要 7
二、研究背景與目的 9
三、文獻回顧 10
3.1 活性碳的物化特性與吸附原理 10
3.1.1 物理性吸附與化學性吸附 10
3.1.2 吸附種類 10
3.1.3 活性碳吸附曲線 11
3.2 影響活性碳吸附因子 11
3.2.1 溫度與溼度 11
3.2.2 有機蒸氣濃度 11
3.2.3 流量 12
3.2.4 溶劑種類 12
3.3.7 填充密度的影響與活性碳本身變異性 13
3.3 有機蒸氣的選擇 13
四、研究方法 14
4.1 實驗裝置 14
4.1.1自製活性碳濾毒罐 14
4.1.2 實驗系統 14
4.1.3 測試微粒 16
4.2實驗步驟 17
4.2.1活性碳吸附 17
4.2.2濾毒罐穿透率 17
4.2.3 微粒負載 18
4.2.4 均勻度 18
4.2.5 活性碳顆粒大小 19
4.2.6 流量、溼度以及有機溶劑濃度 19
五、實驗結果 19
5.1 系統穩定度測試 19
5.2 不同濾罐與相同濾罐破出測試 19
5.3 不同流速與濃度對濾罐破出測試 20
5.4 不同相對溼度對濾罐破出測試 20
5.5不同厚度對濾罐破出測試 20
5.6 不同活性碳顆粒大小對濾罐破出測試 21
5.7 不同均勻度對濾罐破出測試 21
5.8 微粒負載破出測試 21
六 結論與建議 23
七、參考文獻 24

表目錄
表一 10
石東生、鄭蓉瑛, “有機蒸氣濾毒罐研發與性能測試”, 行政院勞工委員會勞工安全衛生研究所,1998年。
陳春萬、陳友剛, “呼吸防護具的密合度”, 勞工安全衛生簡訊第11期,行政院勞工委員會勞工安全衛生研究所,中華民國八十四年六月。
行政院勞工委員會勞工安全衛生研究所, “防護具選用技術手冊-呼吸防護具”, 中華民國八十四年六月。
張璞, “利用廢棄物研製吸附劑以處理有機蒸氣之研究”, 國立台灣大學環境工程研究所, 1986。
江右君, “活性碳物化特性對揮發性有機物吸附之影響”, 國立台灣大學環境工程研究所, 1998。
Cooper, C. D. and Alley, F.C., 望熙榮譯, “空氣污染防制”, 中央圖書出版社, 1998.
Cohen, H.J. and Garrison, R.P. “Development of a Field Method for Evaluating the Service Life of Organic Vapor Cartridges:Results of Laboratory Testing Using Carbon Tetrachloride”, Am. Ind. Hyg. Assoc. J. 50(9): 486-495, 1989.
Cohen, H.J. and Garrison, R.P. “Development of a Field Method for Evaluating the Service Life of Organic Vapor Cartridges:Results of Laboratory Testing Using Carbon Tetrachloride Part II: Humidity Effects”, Am. Ind. Hyg. Assoc. J. 51(11): 575-580, 1990.
Cohen, H.J., Briggs, D.E. and Garrison, R.P. “Development of a Field Method for Evaluating the Service Life of Organic Vapor Cartridges- Part III:Results of Laboratory Testing Using Binary Organic Vapor Mixtures”, Am. Ind. Hyg. Assoc. J. 51(1): 34-43, 1991.
Cohen, H.J., Levine, S.P. and Garrison, R.P. “Development of a Field Method for Evaluating the Service Life of Organic Vapor Cartridges- Part IV:Results of Field Validation Trials”, Am. Ind. Hyg. Assoc. J. 52(7): 263-270, 1991.
Davidson, J.H. and McMurry, P.H. “Adsorption”, ME 5115, Fall 2000.
Dharamarajan, V., Lingg, R.D., and Moyer, H.E. “Evaluation of Organic- Vapor Respirator
Cartridge Efficiency for for Hexamethylene Diisocyanate Vapor in the Presence of Organic Solvent”, Applied Occupational and Environmental Hygiene, V 6(3): 397-404,2001.
Donohue, M. D. and Aranovich, G. D. “Classification of Gibbs adsorption isotherms”, Advances in Colloid and Interface Science. 76-77: 137-152,1998.
Francisco, R. R., “The Role of Carbon Materials in Heterogeneous Catalysis”, Carbon, V 36(3): 159-175,1998.
Kawar, K.H. and Underhill, D.W. “Effect of Relative Humidity on the Adsorption of Selected Water-Miscible Organic Vapors by Activated Carbon”, Am. Ind. Hyg. Assoc. J. 60: 730-736, 1999.
Liu, B. Y. H. and Lee, J. K., “Respirator Leak Detection by Ultrafine Aerosols: A Predictive Model and Experimental Study”, Aerosol Science and Technology 19: 15-26, 1993.
Moyer, E. S., Smith, S. J., and Wood, G. O., “Carbon Tetrachloride Replacement Compounds for Organic Vapor Air-Purifying Respirator Cartridge and Activated Carbon Testing- A Review”, Am. Ind. Hyg. Assoc. J. 62: 494-507, 2001.
Nelson, G.O., Ruch, W.E., Lindeken, C.L., Johnsen, R.G., and Hodgkins, D.L. “Respirator Cartridge Efficiency Studies:I. Experimental Design”, Am. Ind. Hyg. Assoc. J. 33: 105-109, 1972.
Nelson, G.O. and Hodgkins, D.L. “Respirator Cartridge Efficiency Studies:II. Preparation of Test Atmospheres”, Am. Ind. Hyg. Assoc. J. 33: 110-116, 1972.
Nelson, G.O., Johnsen, R.G., Lindeken, C.L., and Taylor, R.D.. “Respirator Cartridge Efficiency Studies:III. A Mechanical Machine to Simulate Human Respiration”, Am. Ind. Hyg. Assoc. J. 33: 745-750, 1972.
Nelson, G.O. and Harder, C.A. “Respirator Cartridge Efficiency Studies:IV. Effects of Steady-State and Pulsation Flow”, Am. Ind. Hyg. Assoc. J. 33: 797-805, 1972.
Nelson, G.O. and Harder, C.A. “Respirator Cartridge Efficiency Studies:V. Effects of Solvent Vapor”, Am. Ind. Hyg. Assoc. J. 35: 391-410, 1974.
Nelson, G.O. and Harder, C.A. “Respirator Cartridge Efficiency Studies:VI. Effects of Concentration”, Am. Ind. Hyg. Assoc. J. 37: 205-216, 1976.
Nelson, G.O. and Correia, A.N. “Respirator Cartridge Efficiency Studies:VII. Effects of Relative Humidity and Temperature”, Am. Ind. Hyg. Assoc. J. 37: 280-288, 1976.
Nelson, G.O. and Correia, A.N. “Respirator Cartridge Efficiency Studies:VIII. Summary and Conclusions”, Am. Ind. Hyg. Assoc. J. 37: 514-525, 1976.
Ruthven, D.M., “Principle of Adsorption & Adsorption Process”, John Wiley and Sons, New York, 1984.
Swearengen, P.M. and Weaver, S.C. “Respirator Cartridge Study Using Organic-Vapor Mixtures”, Am. Ind. Hyg. Assoc. J. 49(2): 70-74, 1988.
Tanaka, S., Nakano, Y., Tsunemori, K., Shimada, M., and Seki, Y. “A Study on Relative Breakthrough Time (RBT) of a Respirator Cartridge for Forty-Six Kinds of Organic Solvent Vapors”, Applied Occupational and Environmental Hygiene, Vol4:691-695, 1999.
Tanaka, S., Nakano, Y., Tsunemori, K., Shimada, M., and Seki, Y. “A Simple Method for Detecting Breakthroughs in Used Chemical Cartridges”, Am. Ind. Hyg. Assoc. J. 62: 168-171, 2001.
Trout, D., Breysse, P. N., Hall, T., Corn, M. and Risby, T. “Determination of Organic Vapor Respirator Cartridge Variability in Terms of Degree of Activation of the Carbon and Cartridge Pacing Densiy”, Am. Ind. Hyg. Assoc. J. 47(8): 49-496, 1986.
Yoon, Y.H and Nelson, J.H. “Application of Gas Adsorption Kinetics I. A Theoretical Model for Respirator Cartridge Service Life”, Am. Ind. Hyg. Assoc. J. 45(8): 509-516, 1984.
Yoon, Y.H and Nelson, J.H. “Application of Gas Adsorption Kinetics II. A Theoretical Model for Respirator Cartridge Service Life”, Am. Ind. Hyg. Assoc. J. 45(8): 517-524, 1984.
Yoon, Y.H and Nelson, J.H. “A Theoretical Study of the Effect of Humidity on Respirator Cartridge Service Life”, Am. Ind. Hyg. Assoc. J. 49(7): 325-332, 1988.
Yoon, Y.H and Nelson, J.H. “Effects of Humidity and Contaminant Concentration on Respirator Cartridge Breakthrough”, Am. Ind. Hyg. Assoc. J. 51(4): 202-209, 1990.
Yoon, Y.H and Nelson, J.H. “Contaminant Breakthrough:A Theoretical Study of Charcoal Sampling Tubes”, Am. Ind. Hyg. Assoc. J. 51(6): 319-325, 1990.
Yoon, Y.H, Nelson, J.H., Lara J., Kamel C. and Fregeau D. “A Theoretical Interpretation of the Service Life of Respirator Cartridges for the Binary Acetone/ m-Xylene System”, Am. Ind. Hyg. Assoc. J. 52(2): 65-74, 1991.
Yoon, Y.H and Nelson, J.H. “Breakthrough Time And Adsorption Capacity of Respirator Cartridges”, Am. Ind. Hyg. Assoc. J. 53(5): 303-316, 1992.
Yoon, Y.H, Nelson, J.H., Lara J., Kamel C. and Fregeau D. “A Theoretical Model for Respirator Cartridge Service Life for Binary Systems: Application to Acetone/ Styrene Mixtures”, Am. Ind. Hyg. Assoc. J. 53(8): 493-502, 1992.
Yoon, Y.H, Nelson, J.H., and Lara J. “Respirator Cartridge Service- Life: Exposure to Mixtures”, Am. Ind. Hyg. Assoc. J. 57: 809-819, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔