|
Arbabi, S. and Maier, R.V. (2002) Mitogen-activated protein kinases. Crit. Care Med. 30: S74-S79.
Baron, S., Li, J., Russell III, R.R., Neumann, D., Miller, E.J., Tuerk, R., Walliman, T., Hurley, R., Witters, L.A. and Young, L.H. (2005) Dual mechanisms regulating AMP-activated protein kinase action in the ischemic heart. Cir. Res. 96: 337-345.
Beauloye, C., Marsin, A.S., Bertrand, L., Krause, U., Hardie, D.G., Vanoverschelde, J.L. and Hue, L. (2001a) Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Lett. 505: 348-352.
Beauloye, C., Bertrand, L., Krause, U., Marsin, A.S., Dresselaers, T., Vanstapel, F., Vanoverschelde, J.L. and Hue, L. (2001b) No-flow ischemia inhibits insulin signaling in heart by decreasing tntracellular pH. Circ. Res. 88: 513-519.
Behr-Roussel, D., Rupin, A., Simonet, S., Bonhomme, E., Coumailleau, S., Cordi, A., Serkiz, B., Fabiani, J. N. and Verbeuren, T. J. (2000) Effect of chronic treatment with the inducible nitric oxide synthase inhibitor N-iminoethyl-l-lysine or with l-arginine on progression of coronary and aortic atherosclerosis in hypercholesterolemic rabbits. Circulation 102: 1033–1038.
Bhat, N.R., Zhang, P., Lee, J.C. and Hogan, E.L. (1998). Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxin-stimulated primary glial cultures. J. Neurosci. 18: 1633-1641.
Blair, E., Redwood, C., Ashrafian, H., Oliveira, M., Broxholme, J., Kerr, B., Salmon, A., Ostman-Smith, I. and Watkins, H. (2001) Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Human Mol. Genetics. 10: 1215-1220.
Bogdan, C., Rollinghoff, M. and Diefenbach, A. (2000) The role of nitric oxide in innate immunity. Immunol. Rev. 173: 17–26.
Bonizzi, G. and Karin, M. (2004) The two NF-KB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25: 280-288.
Campas, C., Lopez, J.M., Santidrian, A.F., Barragan, M., Bellosillo, B., Colomer, D. and Gil, J. (2003) Acadesine activates AMPK and induces apoptosis in B-cell chronic lymphocytic leukemia cells but not in T lymphocytes. Blood 101: 3674-3680.
Carling, D., Fryer, L.G.D., Woodsd, A., Daniel, T., Jarvie, S.L.C. and Whitrow, H. (2003) Bypassing the glucose/fatty acid cycle: AMP-activated protein kinase. Biochem. Soc. Trans. 31: 1157-1160.
Carling, D. (2004) The AMP-activated protein kinase cascade-a unifying system for energy control. Trend Biochem. Sci. 29: 18-24.
Chan, A.Y., Soltys, C.L., Young, M.E., Proud, C.G. and Dyck, J.R. (2004) Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J. Biol. Chem. 279: 32771-32779.
Chen, J.C., Huang, K.C., Wingerd, B., Wu, W.T. and Lin, W.W. (2004) HMG-CoA reductase inhibitors induce COX-2 gene expression in murine macrophages: role of MAPK cascades and promoter elements for CREB and C/EBP. Exp. Cell Res. 301: 305-319.
Chen, B.C., Chen, Y.H. and Lin, W.W. (1999b) Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunology 97: 124-129.
Chen, Z.P., Mitchelhill, K.I., Michell, B.J., Stapleton, D., Rodriguez-Crespo, I., Witters, L.A., Power, D.A., Ortiz de Montellano, P.R. and Kemp, B.E. (1999a) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 443: 285-289.
Corton, J.M., Gillespie, J.G., Hawley, S.A., Hardie, D.G. (1995) 5-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eu. J. Biochem. 229: 558-565.
Cromheeke, K.M., Kockx, M.M., De Meyer, G.R., Bosmans, J.M., Bult, H., Beelaerts, W.J., Vrints, C.J. and Herman, A.G. (1999) Inducible nitric oxide synthase colocalizes with signs of lipid oxidation/peroxidation in human atherosclerotic plaques. Cardiovasc. Res. 43: 744–754.
Cusi, K. and DeFronzo, R.A. (1998) Metformin: a review of its metabolic effects. Diabetes Reviews. 6: 89-131.
Daniel, T. and Carling, D. (2002) Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome. J. Biol. Chem. 277: 51017-51024.
Fabian, T.C., Fabian, M.J., Yockey, J.M. and Proctor, K.G. (1996) Acadesine and lipopolysaccharide-evoked pulmonary dysfunction after resuscitation from traumatic shock. Surgery 119: 302-315.
Fan, J., Ye, R. D. and Malik, A. B. (2001) Transcriptional mechanisms of acute lung injury. Am. J. of Physiol. Lung Cell. Mol. Physiol. 281: L1037-L1050.
Frungieri, M.B., Albrecht, M., Raemsch, R. and Mayerhofer, A. (2005) The action of the mast cell product tryptase on cyclooxygenase-2 (COX2) and subsequent fibroblast proliferation involves activation of the extracellular signal-regulated kinase isoforms 1 and 2 (erk1/2). Cell Signal.17: 525-533.
Fryer, L.G.D., Foufelle, F., Barnes, K., Baldwin, S.A., Woods, A. and Carling, D. (2002) Characterisation of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle. Biochem. J. 363: 167-174.
Gamble, J. and Lopaschuk, G.D. (1997) Insulin resistance is not a major determinant of low-density lipoprotein particle size. Metabolism 46: 1270-1274.
Ghosh, S. and Karin, M. (2002) Missing pieces in the NF-kappaB puzzle. Cell. Suppl:S81-96.
Gielen, S., Adams, V., Mobius-Winkler, S., Linke, A., Erbs, S., Yu, J., Kempf, W., Schubert, A., Schuler, G. and Hambrecht, R. (2003) Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J. Am. Cell. Cardiol. 42: 861–868.
Gimeno-Alcaniz, J.V. and Sanz, P. (2003) Glucose and type 2A protein phosphatase regulate the interaction between catalytic and regulatory subunits of AMP-activated protein kinase. J. Mol. Biol. 333: 201-209.
Giri, S. and Jatana, M. (2002) Missing pieces in the NFβ-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J. Neurosci. 24: 479-487.
Gollob, M.H., Seger, J.J., Gollob, T.N., Tapscott, T., Gonzales, O., Bachinski, L. and Roberts, R. (2001) Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation. 104: 3030-3033.
Guan, Z., Buckman, S.Y., Pentland, A.P., Templeton, D.J. and Morrison, A.R. (1998) Induction of cyclooxygenase-2 by the activated MEKK1-SEK1/MKK4-p38 mitogen-activated protein kinase pathway. J. Biol. Chem. 273: 12901-12908.
Guha, M. and Mackman, N. (2002) The phosphatidylinositol 3-kinase–Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells, J. Biol. Chem. 277: 32124-32132.
Hardie, D.G. and Carling, D. (1997) The AMP-activated protein kinase: Fuel gauge of the mammalian cell? Eu. J. Biochem. 246: 259-273.
Hardie, D.G., Carling, D. and Carlson, M. (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67: 821-855.
Hardie, G. (2003) The AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144: 5179-5183.
Hawley, S.A., Selbert, M.A., Goldstein, E.G., Edelman, A.M., Carling, D. and Hardie, D.G. (1995) 5’-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270: 27186-27191.
Hawley, S.A., Gadalla, A.E., Olsen, G.S. and Hardie, D.G. (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51: 2420-2425.
Hawley, S.A., Boudeau, J., Reid, J.L., Mustard, K.J., Udd, L., Makela, T.P., Alessi, D.R. and Hardie, D.G. (2003) Complexes between the LKB1 tumor suppressor, STRADα/β and MOα/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2: 28.21-28.15.
Herlaar, E. and Brown, Z. (1999) p38 MAPK signaling cascades in inflammatory disease. Mol. Med. Today 5: 439-447.
Holen, I., Gordon, P.B. and Seglen, P.O. (1993) Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eu. J. Biochem. 215: 113-122.
Hong, S.P., Leiper, F.C., Woods, A., Carling, D. and Carlson, M. (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. USA 100: 8839-8843.
Inoue, H., Yokoyama, C., Hara, S., Tone, Y. and Tanabe, T. (1995) Transcriptional regulation of human prostaglandin-endoperoxide synthases-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvenment of both nuclear factor for interleukin-6 expression site and cAMP response element. J. Biol. Chem. 270: 24956-24971.
Jhun, B.S., Jin, Q., Oh, Y.T., Kim, S.S., Kong, Y., Cho, Y.H., Ha, J., Baik, H.H. and Kang, I. (2004) 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-α production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW264.7 murine macrophages. Biochem. Biophys. Res. Commun. 318: 372-380.
Jobbin, C. and Sartor, R.B. (2000) The IKB/NF-KB system: a key determinant of mucosa inflammation and protection. Am. J. Physiol. Cell Physiol. 278: 451-462.
Jung, J.E., Lee, J., Ha, J., Kim, S.S., Cho, Y.H., Baik, H.H. and Kang, I. (2004) 5-Aminoimidazole-4-carboxamide-ribonucleoside enhances oxidative stress-induced apoptosis through activation of nuclear factor-KB in mouse Neuro 2a neuroblastoma cells. Neurosci. Lett. 354: 197-200.
Kemp, B.E., Mitchelhill, K.I., Stapleton, D., Michell, B.J., Chen, Z.P. and Witters, L.A. (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem. Sci. 24: 22-25.
Kleinert, H., Euchenhofer, C., Ihrig-Biedert, I. and Forstermann U. (1996) In murine 3T3 fibroblasts, different second messenger pathways resulting in the induction of NO synthase II (iNOS) converge in the activation of transcription factor NF-kappaB. J Biol Chem.271: 6039-6044.
Kovacic, S., Soltys, C.L.M., Barr, A.J., Shiojima, I., Walsh, K. and Dyck, J.R.B. (2003) Akt activity negatively regulates phosphorylation of AMPK in the heart. J. Biol. Chem. 278: 39422-39427.
Kristof, A.S., Marks-Konczalik, J. and Moss J. (2001) Mitogen-activated protein kinases mediate activator protein-1-dependent human inducible nitric-oxide synthase promoter activation. J Biol Chem. 276: 8445-8452.
Kudo, N., Gillespie, J.G., Kung, L., Witters, L.A., Schulz, R., Clanachan, A.S. and Lopaschuk, G.D. (1996) Characterization of 5''AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochem. Biophys. Acta 1301: 67-75.
Lizcano, J.M., Goransson, O., Toth, R., Deak, M., Morrice, N.A., Boudeau, J., Hawley, S.A. Udd, L., Makela, T.P., Hardie, D.G. and Alessi, D.R. (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MAPK/PAR-1. EMBO J. 23: 833-843.
Lopez, J.M., Santidrian, A.F., Campas, C. and Gil, J. (2003) 5-Aminoimidazole-4-carboxamide riboside induces apoptosis in Jurkat cells, but the AMP-activated protein kinase is not involved. Biochem. J. 370: 1027-1032.
Lowenstein, C.J., Alley, E.W., Raval, P., Snowman, A.M., Snyder, S.H., Russell, S.W. and Murphy, W.J. (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci U S A. 90: 9730-9734.
Marks-Konczalik, J., Chu, S.C. and Moss, J. (1998) Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor kappaB-binding sites. J Biol Chem. 273: 22201-22208.
Marsin, A.S., Bouzin, C., Bertrand, L. and Hue, L. (2002) The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J. Biol. Chem. 277: 30778-30783.
Means, T.K., Pavlovich, R.P., Roca, D., Vermeulen, M.W., and Fenton, M.J. (2000) Activation of TNF-alpha transcription utilizes distinct MAP kinase pathways in different macrophage populations. J. Leukoc. Biol. 67: 885-893.
Melton, S.M., Moomey, C.B.Jr., Ragsdale, D.N., Trenthem, L.L., Croce, M.A., Fabian, T.C. and Proctor, K.G. (1999) Acadesine during fluid resuscitation from shock and abdominal sepsis. Crit Care Med. 27: 468-469.
Merrill, G.F., Kurth, E.J., Hardie, D.G. and Winder, W.W. (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273: E1107-E1112.
Moore, F., Weekes, J. and Hardie, D.G. (1991) Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eu. J. Biochem. 199: 691-697.
Morrow, V.A., Foufelle, F., Connell, J.M., Petrie, J.R., Gould, G.W. and Salt, I.P. (2003) Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J. Biol. Chem. 278: 31629-31639.
Mu, J., Broznick, Jr. J.T., Valladares, O., Bucan, M. and Birnbaum, M.J. (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7: 1085-1094.
Mu, J., Barton, E.R. and Birnbaum, M.J. (2003) Selective suppression of AMP-activated protein kinase in skeletal muscle: update on ‘lazy mice’. Biochem. Soc. Trans. 31: 236-241.
Mullane, K. and Bullough, D. (1995) Harnessing an endogenous cardioprotective mechanism: cellular sources and sites of action of adenosine. J Mol Cell Cardiol. 27: 1041-1054.
Musi, N., Hirshman, M.F., Nygren, J., Svandeldt, M., Bavenholm, P., Rooyackers, O., Zhou, G., Williamson, J.M., Ljunqvist, O., Efendic, S., Moller, D.E., Thorell, A. and Goodyear, L.J. (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51: 2074-2081.
Musi, N. and Goodyear, L.J. (2003) AMP-activated protein kinase and muscle glucose uptake. Acta Physiol. Scand. 178: 337-345.
Nathan, C. (1997) Inducible nitric oxide synthase: what difference does it make? J. Clin. Invest. 100: 2417-2423.
Nagata, D., Mogi, M. and Walsh, K. (2003) AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J. Biol. Chem. 278: 31000-31006.
Nick, J.A., Young, S.K., Brown, K.K., Avdi, N.J., Arndt, P.G., Suratt, B.T., Janes, M.S., Henson, P.M. and Worthen, G.S. (2000) Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation. J. Immunol. 164: 2151-2159.
Ojaniemi, M., Glumoff, V., Harju, K., Liljeroos, M., Vuori, K., and Hallman, M. (2003) Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur. J. Immunol. 33: 597-605.
Ono, K. and Han, J. (2000) The p38 signal transduction pathway: activation and function. Cell. Signal. 12: 1-13.
Park, S. J., Lee, S. C., Hong, S. H. and Kim, H. M. (2002) Degradation of I kappa B alpha in activated RAW264.7 cells is blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Cell Biol. Toxicol. 18: 121-130.
Parkinson, J. F., Mitrovic, B. and Merrill, J. E. (1997) The role of nitric oxide in multiple sclerosis. J. Mol. Med. 75: 174-186.
Peralta, C., Bartrons, R., Serafin, A., Blazquez, C., Guzman, M., Prats, N., Xaus, C., Cutillas, B., Gelpi, E., and Rosello-Catafau, J. (2001) Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia–reperfusion injury in the rat. Hepatology 34: 1164-1173.
Perreault, M. and Marette, A. (2001) Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat. Med. 7, 1138-1143.
Pilon, G., Dallaire, P. and Marette, A. (2004) Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase. J. Biol. Chem. 279: 20767-20774.
Poli, V. (1998) The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J. Biol. Chem. 273: 29279-29282.
Quchi, N., Kobayashi, H., Kihara, S., Kumada, M., Sato, K., Inoue, T., Funahashi, T. and Walsh, K. (2004) Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 279: 1304-1309.
Rubin, L.J., Magliola, L., Feng, X., Jones, A.W. and Hale, C.C. (2004) Metabolic activation of AMP kinase in vascular smooth muscle. J. Appl. Physiol. 98: 296-306.
Russell, R.R. 3rd., Li, J., Coven, D.L., Pypaert, M., Zechner, C., Palmeri, M., Giordano, F.J., Mu, J., Birnbaum, M.J. and Young, L.H. (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J. Clin. Invest. 114: 495-503.
Sambandam, N. and Lopaschuk, G.D. (2003) AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog. Lipid Res. 42: 238-256.
Samari, H.R., Moller, M.T.N., Holden, L., Asmyhr, T. and Seglen, P.O. (2005) Stimulation of hepatocytic AMP-activated protein kinase by okadaic acid and other autophagy-suppressive toxins. Biochem. J. 386: 237-244.
Shaw, R.J., Kostmatka, M., Bardeesy, N., Hurley, R.L., Witters, L.A., Depinho, R.A. and Cantley, L.C. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. USA 101: 3329-3335.
Sheng, H., Shao, J., Dixon, D.A., Williams, C.S., Prescott, S.M., DuBois, R.N. and Beauchamp, R.D. (2000) Transforming growth factor-beta1 enhances Ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J Biol Chem. 275: 6628-6635.
Shimabukuro, M., Ohneda, M., Lee, Y. and Unger, R. H. (1997) Role of nitric oxide in obesity-induced beta cell disease. J. Clin. Invest. 100: 290-295.
Stefanelli, C., Stanic, I., Bonavita, F., Flamigni, F., Pignatti, C., Guarnieri, C. and Caldarera, C.M. (1998) Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 243: 821-826.
Stein, S.C., Woods, A., Jones, N.A., Davison, M.D. and Carling, D. (2000) The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 345: 437-443.
Stichtenoth, D. O. and Frolich, J. C. (1998) Nitric oxide and inflammatory joint diseases. Br. J. Rheumatol. 37, 246–257.
Sum, C.F., Webster, J.M., Johnson, A.B., Catalano, C., Cooper, B.G. and Taylor, R. (1992) The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes. Diabet Med. 9: 61-65.
Swain, J.L., Sabina, R.L., McHale, P.A., Greenfield, J.C.Jr and Holmes, E.W. (1982) Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol. 242: H818-826.
Tamura, M., Sebastian, S., Yang, S., Gurates, B., Fang, Z., Okamura, K. and Bulun, S.E. (2003) Induction of cyclooxygenase-2 in human endometrial stromal cells by malignant endometrial epithelial cells: evidence for the involvement of extracellularly regulated kinases and CCAAT/enhancer binding proteins. J. Mol. Endo. 31: 95-104.
Vincent, M. F., Marangos, P. J., Gruber, H. E. and Van den Berghe, G. (1991) Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes 40:1259-1266.
Wadleigh, D.J., Reddy, S.T., Kopp, E., Ghosh, S. and Herschman, H.R. (2000) Transcriptional activation of the cyclooxygenase-2 gene in endotoxin-treated RAW264.7 macrophages. J. Biol. Chem. 275: 6259-6266.
Wang, M.Y. and Unger, R.H. (2005) Role of PP2C in cardiac lipid accumulation in obese ordents and its prevention by troglitazone. Am. J. Physiol. Endo. Med. 288: E216-E221.
Weinberg, J.B. (2000) Nitric oxide synthase 2 and cyclooxygenase 2 interactions in inflammation. Immunol Res. 22: 319-341.
Winder, W. W. and Hardie, D.G. (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277: E1-E10.
Winder, W.W. (2000) AMP-activated protein kinase: possible target for treatment of type 2 diabetes. Diabetes Technol. Ther. 2: 441-448.
Wojtaszewski, J.F.P., Nielsen, J.N., Jorgensen, S.B., Frosig, C., Birk, J.B. and Richter, E.A. (2003) Transgenic models-a scientific tool to understand exercise-induced metabolism: the regulatory role of AMPK (5’-AMP-activated protein kinase) in glucose transport and glycogen synthase activity in skeletal muscle. Biochem. Soc. Trans. 31: 1290-1294.
Woods, A., Johnstone, S.R., Dickerson, K., Leiper, F.C., Fryer, L.G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M. and Carling, D. (2003a) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13: 2004-2008.
Woods, A., Vertommen, D., Neumann, D., Turk, R., Bayliss, J., Schlattner, U., Wallimann, T., Carling, D. and Rider, M.H. (2003b) Identification of phosphorylation sites in AMP-activated protein kinase for upstream AMP-activated protein kinase kinases and study of their roles by site-directed mutagenesis. J. Biol. Chem. 278: 28434-28442.
Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B.B. and Kadowaki, T. (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8: 1288-1295.
Young, M.E., Radda, G.K. and Leighton, B. (1996) Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR--an activator of AMP-activated protein kinase. FEBS Lett. 382: 43-47.
Zhao, Z.Q., Williams, M.W., Sato, H., Hudspeth, D.A., McGee, D.S., Vinten-Johansen, J. and Van Wylen, D.G. (1995) Acadesine reduces myocardial infarct size by an adenosine mediated mechanism. Cardiovasc. Res. 29: 495-505.
Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M.F., Goodyear, L.J. and Moller, D.E. (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167-1174.
Zou, M.H., Hou, X., Shi, M., Nagata, D., Walsh, K. and Cohen, R.A. (2002) Modulation by peroxynitrite of Akt- and AMP-activated protein kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J. Biol. Chem. 277: 32552-32557.
Zou, M.H., Hou, X.Y., Shi, C.M., Kirkpatick, S., Liu, F., Goldman, M.H. and Cohen, R.A. (2003) Activation of 5’-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells. J. Biol. Chem. 278: 34003-34010.
Zou, M.H., Kirkpatrick, S.S., Davis, B.J., Nelson, J.S., Wiles IV, W.G., Schlattner, U., Neumann, D., Brownlee, M., Freeman, M.B. and Goldman, M.H. (2004) Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J. Biol. Chem. 279: 43940-43951.
|