( 您好!臺灣時間:2021/04/15 08:04
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chih-Lin Kuo
論文名稱(外文):AMPK-dependent and -independent action mechanisms of AICAR in the regulation of iNOS and COX-2 gene expressions
  • 被引用被引用:0
  • 點閱點閱:712
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
AMPK是一種能量調控的酵素,在細胞能量的調節上扮演了很重要的角色,尤其是生物體面臨能量缺乏的壓力的時候,如:細胞內ATP量的減少或AMP量的增加時,AMPK便會被活化而調控一連串的訊息傳遞途徑,以保護生物體免於代謝失衡之疾病。從分子生物學的觀點來看,AMPK的活化主要和其α-subunit上的Thr172磷酸化有關。除此之外,近幾年來在細胞及動物實驗的研究發現AMPK也可能參與了調控發炎反應的訊息傳遞途徑。在這份研究裡,利用AMPK的活化劑-AICAR,我們探討了AMPK在LPS誘發的發炎反應中所扮演的角色。實驗証實了AICAR可以藉由減弱iNOS和COX-2的基因表現,來抑制LPS對巨噬細胞及微小神經膠細胞刺激而誘發的NO和PGE2生成。再者,AICAR亦能抑制LPS誘導的NFKB, AP-1, CREB及C/EBPβ的活化,減弱這些轉錄因子與基因啟動子的結合。相反的,AICAR卻不能抑制LPS誘導的IKK磷酸化,IKB降解或p65進入細胞核。我們亦証實了AICAR可以直接抑制NFKB, CREB及C/EBPβ對基因啟動子的結合。儘管AICAR可以促進AMPK的磷酸化,但其對LPS誘發的發炎反應的抑制作用卻與其活化AMPK無關。証據是因5''-iodotubercidin可藉由抑制adenosine kinase而抑制AICAR代謝成ZMP,使得AICAR無法活化 AMPK,但卻無法使AICAR對LPS的抑制作用產生逆轉。然而,在缺乏LPS刺激的情況下,AICAR本身在巨噬細胞、微小神經膠細胞和人類臍靜脈內皮細胞卻可微弱地增加iNOS及/或COX-2的表現。此作用可被5''-iodotubercidin逆轉,且可能與AICAR活化IKK, PKC, p38, ERK及Akt相關,故我們推測AMPK可能參與了各種細胞生理功能調控的訊息傳遞途徑,深具進一步研究的價值。簡而言之,我們的研究証實了AICAR對iNOS和COX-2的基因表現可藉由AMPK的參與或不參與而具有雙面的調控能力,顯示了AICAR可能在未來發炎相關疾病的治療具有研發價值。
AMP-activated protein kinase (AMPK), an energy-sensing enzyme that is activated in response to cellular stress, is a critical signaling molecule for the regulation of energy homeostasis and might play a part in protecting the body from metabolic diseases. AMPK is activated by the cellular stresses causing ATP depletion. At the molecular level, AMPK activation is associated with Thr172 phosphorylation on the catalytic α subunit by AMPK kinase (AMPKK). Besides, AMPK might be a novel anti-inflammatory signaling pathway. Recent observations in cultured cells as well as in the animal model suggest the regulatory role of AMPK signaling pathway in inflammatory process, and 5-aminoimidazole-4-carboxamide riboside (AICAR), an AMPK activator, of therapeutic value in treating inflammatory diseases. In this study, we examined the possible role of AMPK in the lipopolysaccharide (LPS)-induced inflammatory process in cultured cells and demonstrated that AICAR inhibits LPS-induced NO and PGE2 production in RAW264.7 macrophages and BV-2 microglia through downregulation of iNOS and COX-2 gene transcription. Moreover, AICAR could block LPS-mediated NFKB, AP-1, CREB and C/EBPβ activation. Conversely, AICAR fails to inhibit LPS-mediated IKK phosphorylation, IKB degradation and p65 nuclear translocation. In vitro direct addition of AICAR in EMSA assays reveals the interruption of NFKB, CREB and C/EBP binding to specific DNA element. Despite the ability of AICAR to enhance AMPK phosphorylation, these effects of AICAR are not associated with AMPK, as 5’-iodotubercidin, an inhibitor of adenosine kinase which blocks AICAR conversion to AMPK activator, fails to change AICAR action. Notably in the absence of LPS challenge we also observed a weak stimulatory effect of AICAR on iNOS and COX-2 protein expression in macrophages, microglia and human umbilical vein endothelial cells (HUVEC). This action of AICAR can be blocked by 5’-iodotubercidin, and might result from the activation of IKK, PKC, p38, ERK and/or Akt. These results imply AMPK might be involved in the upstream regulation of multiple signaling pathways, and in turn exerts diverse cellular functions which open a new research interest. Taken together, our current study documents the dual roles of AICAR on iNOS and COX-2 gene transcription through different action mechanisms, and suggests AICAR may be of therapeutic value in treating inflammatory diseases.

AMPK-dependent and -independent action mechanisms of AICAR in the regulation of iNOS and COX-2 gene expressions--------------------------------3


Chinese abstract--------------------------------------------------------------------------6


Materials and methods-----------------------------------------------------------------16





Arbabi, S. and Maier, R.V. (2002) Mitogen-activated protein kinases. Crit. Care Med. 30: S74-S79.

Baron, S., Li, J., Russell III, R.R., Neumann, D., Miller, E.J., Tuerk, R., Walliman, T., Hurley, R., Witters, L.A. and Young, L.H. (2005) Dual mechanisms regulating AMP-activated protein kinase action in the ischemic heart. Cir. Res. 96: 337-345.

Beauloye, C., Marsin, A.S., Bertrand, L., Krause, U., Hardie, D.G., Vanoverschelde, J.L. and Hue, L. (2001a) Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Lett. 505: 348-352.

Beauloye, C., Bertrand, L., Krause, U., Marsin, A.S., Dresselaers, T., Vanstapel, F., Vanoverschelde, J.L. and Hue, L. (2001b) No-flow ischemia inhibits insulin signaling in heart by decreasing tntracellular pH. Circ. Res. 88: 513-519.

Behr-Roussel, D., Rupin, A., Simonet, S., Bonhomme, E., Coumailleau, S., Cordi, A., Serkiz, B., Fabiani, J. N. and Verbeuren, T. J. (2000) Effect of chronic treatment with the inducible nitric oxide synthase inhibitor N-iminoethyl-l-lysine or with l-arginine on progression of coronary and aortic atherosclerosis in hypercholesterolemic rabbits. Circulation 102: 1033–1038.

Bhat, N.R., Zhang, P., Lee, J.C. and Hogan, E.L. (1998). Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxin-stimulated primary glial cultures. J. Neurosci. 18: 1633-1641.

Blair, E., Redwood, C., Ashrafian, H., Oliveira, M., Broxholme, J., Kerr, B., Salmon, A., Ostman-Smith, I. and Watkins, H. (2001) Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Human Mol. Genetics. 10: 1215-1220.

Bogdan, C., Rollinghoff, M. and Diefenbach, A. (2000) The role of nitric oxide in innate immunity. Immunol. Rev. 173: 17–26.

Bonizzi, G. and Karin, M. (2004) The two NF-KB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25: 280-288.

Campas, C., Lopez, J.M., Santidrian, A.F., Barragan, M., Bellosillo, B., Colomer, D. and Gil, J. (2003) Acadesine activates AMPK and induces apoptosis in B-cell chronic lymphocytic leukemia cells but not in T lymphocytes. Blood 101: 3674-3680.

Carling, D., Fryer, L.G.D., Woodsd, A., Daniel, T., Jarvie, S.L.C. and Whitrow, H. (2003) Bypassing the glucose/fatty acid cycle: AMP-activated protein kinase. Biochem. Soc. Trans. 31: 1157-1160.

Carling, D. (2004) The AMP-activated protein kinase cascade-a unifying system for energy control. Trend Biochem. Sci. 29: 18-24.

Chan, A.Y., Soltys, C.L., Young, M.E., Proud, C.G. and Dyck, J.R. (2004) Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J. Biol. Chem. 279: 32771-32779.

Chen, J.C., Huang, K.C., Wingerd, B., Wu, W.T. and Lin, W.W. (2004) HMG-CoA reductase inhibitors induce COX-2 gene expression in murine macrophages: role of MAPK cascades and promoter elements for CREB and C/EBP. Exp. Cell Res. 301: 305-319.

Chen, B.C., Chen, Y.H. and Lin, W.W. (1999b) Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunology 97: 124-129.

Chen, Z.P., Mitchelhill, K.I., Michell, B.J., Stapleton, D., Rodriguez-Crespo, I., Witters, L.A., Power, D.A., Ortiz de Montellano, P.R. and Kemp, B.E. (1999a) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 443: 285-289.

Corton, J.M., Gillespie, J.G., Hawley, S.A., Hardie, D.G. (1995) 5-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eu. J. Biochem. 229: 558-565.

Cromheeke, K.M., Kockx, M.M., De Meyer, G.R., Bosmans, J.M., Bult, H., Beelaerts, W.J., Vrints, C.J. and Herman, A.G. (1999) Inducible nitric oxide synthase colocalizes with signs of lipid oxidation/peroxidation in human atherosclerotic plaques. Cardiovasc. Res. 43: 744–754.

Cusi, K. and DeFronzo, R.A. (1998) Metformin: a review of its metabolic effects. Diabetes Reviews. 6: 89-131.

Daniel, T. and Carling, D. (2002) Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome. J. Biol. Chem. 277: 51017-51024.

Fabian, T.C., Fabian, M.J., Yockey, J.M. and Proctor, K.G. (1996) Acadesine and lipopolysaccharide-evoked pulmonary dysfunction after resuscitation from traumatic shock. Surgery 119: 302-315.

Fan, J., Ye, R. D. and Malik, A. B. (2001) Transcriptional mechanisms of acute lung injury. Am. J. of Physiol. Lung Cell. Mol. Physiol. 281: L1037-L1050.

Frungieri, M.B., Albrecht, M., Raemsch, R. and Mayerhofer, A. (2005) The action of the mast cell product tryptase on cyclooxygenase-2 (COX2) and subsequent fibroblast proliferation involves activation of the extracellular signal-regulated kinase isoforms 1 and 2 (erk1/2). Cell Signal.17: 525-533.

Fryer, L.G.D., Foufelle, F., Barnes, K., Baldwin, S.A., Woods, A. and Carling, D. (2002) Characterisation of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle. Biochem. J. 363: 167-174.

Gamble, J. and Lopaschuk, G.D. (1997) Insulin resistance is not a major determinant of low-density lipoprotein particle size. Metabolism 46: 1270-1274.

Ghosh, S. and Karin, M. (2002) Missing pieces in the NF-kappaB puzzle. Cell. Suppl:S81-96.

Gielen, S., Adams, V., Mobius-Winkler, S., Linke, A., Erbs, S., Yu, J., Kempf, W., Schubert, A., Schuler, G. and Hambrecht, R. (2003) Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J. Am. Cell. Cardiol. 42: 861–868.

Gimeno-Alcaniz, J.V. and Sanz, P. (2003) Glucose and type 2A protein phosphatase regulate the interaction between catalytic and regulatory subunits of AMP-activated protein kinase. J. Mol. Biol. 333: 201-209.

Giri, S. and Jatana, M. (2002) Missing pieces in the NFβ-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J. Neurosci. 24: 479-487.

Gollob, M.H., Seger, J.J., Gollob, T.N., Tapscott, T., Gonzales, O., Bachinski, L. and Roberts, R. (2001) Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation. 104: 3030-3033.

Guan, Z., Buckman, S.Y., Pentland, A.P., Templeton, D.J. and Morrison, A.R. (1998) Induction of cyclooxygenase-2 by the activated MEKK1-SEK1/MKK4-p38 mitogen-activated protein kinase pathway. J. Biol. Chem. 273: 12901-12908.

Guha, M. and Mackman, N. (2002) The phosphatidylinositol 3-kinase–Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells, J. Biol. Chem. 277: 32124-32132.

Hardie, D.G. and Carling, D. (1997) The AMP-activated protein kinase: Fuel gauge of the mammalian cell? Eu. J. Biochem. 246: 259-273.

Hardie, D.G., Carling, D. and Carlson, M. (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67: 821-855.

Hardie, G. (2003) The AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144: 5179-5183.

Hawley, S.A., Selbert, M.A., Goldstein, E.G., Edelman, A.M., Carling, D. and Hardie, D.G. (1995) 5’-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270: 27186-27191.

Hawley, S.A., Gadalla, A.E., Olsen, G.S. and Hardie, D.G. (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51: 2420-2425.

Hawley, S.A., Boudeau, J., Reid, J.L., Mustard, K.J., Udd, L., Makela, T.P., Alessi, D.R. and Hardie, D.G. (2003) Complexes between the LKB1 tumor suppressor, STRADα/β and MOα/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2: 28.21-28.15.

Herlaar, E. and Brown, Z. (1999) p38 MAPK signaling cascades in inflammatory disease. Mol. Med. Today 5: 439-447.

Holen, I., Gordon, P.B. and Seglen, P.O. (1993) Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eu. J. Biochem. 215: 113-122.

Hong, S.P., Leiper, F.C., Woods, A., Carling, D. and Carlson, M. (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. USA 100: 8839-8843.

Inoue, H., Yokoyama, C., Hara, S., Tone, Y. and Tanabe, T. (1995) Transcriptional regulation of human prostaglandin-endoperoxide synthases-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvenment of both nuclear factor for interleukin-6 expression site and cAMP response element. J. Biol. Chem. 270: 24956-24971.

Jhun, B.S., Jin, Q., Oh, Y.T., Kim, S.S., Kong, Y., Cho, Y.H., Ha, J., Baik, H.H. and Kang, I. (2004) 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-α production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW264.7 murine macrophages. Biochem. Biophys. Res. Commun. 318: 372-380.

Jobbin, C. and Sartor, R.B. (2000) The IKB/NF-KB system: a key determinant of mucosa inflammation and protection. Am. J. Physiol. Cell Physiol. 278: 451-462.

Jung, J.E., Lee, J., Ha, J., Kim, S.S., Cho, Y.H., Baik, H.H. and Kang, I. (2004) 5-Aminoimidazole-4-carboxamide-ribonucleoside enhances oxidative stress-induced apoptosis through activation of nuclear factor-KB in mouse Neuro 2a neuroblastoma cells. Neurosci. Lett. 354: 197-200.

Kemp, B.E., Mitchelhill, K.I., Stapleton, D., Michell, B.J., Chen, Z.P. and Witters, L.A. (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem. Sci. 24: 22-25.

Kleinert, H., Euchenhofer, C., Ihrig-Biedert, I. and Forstermann U. (1996) In murine 3T3 fibroblasts, different second messenger pathways resulting in the induction of NO synthase II (iNOS) converge in the activation of transcription factor NF-kappaB. J Biol Chem.271: 6039-6044.

Kovacic, S., Soltys, C.L.M., Barr, A.J., Shiojima, I., Walsh, K. and Dyck, J.R.B. (2003) Akt activity negatively regulates phosphorylation of AMPK in the heart. J. Biol. Chem. 278: 39422-39427.

Kristof, A.S., Marks-Konczalik, J. and Moss J. (2001) Mitogen-activated protein kinases mediate activator protein-1-dependent human inducible nitric-oxide synthase promoter activation. J Biol Chem. 276: 8445-8452.

Kudo, N., Gillespie, J.G., Kung, L., Witters, L.A., Schulz, R., Clanachan, A.S. and Lopaschuk, G.D. (1996) Characterization of 5''AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochem. Biophys. Acta 1301: 67-75.

Lizcano, J.M., Goransson, O., Toth, R., Deak, M., Morrice, N.A., Boudeau, J., Hawley, S.A. Udd, L., Makela, T.P., Hardie, D.G. and Alessi, D.R. (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MAPK/PAR-1. EMBO J. 23: 833-843.

Lopez, J.M., Santidrian, A.F., Campas, C. and Gil, J. (2003) 5-Aminoimidazole-4-carboxamide riboside induces apoptosis in Jurkat cells, but the AMP-activated protein kinase is not involved. Biochem. J. 370: 1027-1032.

Lowenstein, C.J., Alley, E.W., Raval, P., Snowman, A.M., Snyder, S.H., Russell, S.W. and Murphy, W.J. (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci U S A. 90: 9730-9734.

Marks-Konczalik, J., Chu, S.C. and Moss, J. (1998) Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor kappaB-binding sites. J Biol Chem. 273: 22201-22208.

Marsin, A.S., Bouzin, C., Bertrand, L. and Hue, L. (2002) The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J. Biol. Chem. 277: 30778-30783.

Means, T.K., Pavlovich, R.P., Roca, D., Vermeulen, M.W., and Fenton, M.J. (2000) Activation of TNF-alpha transcription utilizes distinct MAP kinase pathways in different macrophage populations. J. Leukoc. Biol. 67: 885-893.

Melton, S.M., Moomey, C.B.Jr., Ragsdale, D.N., Trenthem, L.L., Croce, M.A., Fabian, T.C. and Proctor, K.G. (1999) Acadesine during fluid resuscitation from shock and abdominal sepsis. Crit Care Med. 27: 468-469.

Merrill, G.F., Kurth, E.J., Hardie, D.G. and Winder, W.W. (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273: E1107-E1112.

Moore, F., Weekes, J. and Hardie, D.G. (1991) Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eu. J. Biochem. 199: 691-697.

Morrow, V.A., Foufelle, F., Connell, J.M., Petrie, J.R., Gould, G.W. and Salt, I.P. (2003) Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J. Biol. Chem. 278: 31629-31639.

Mu, J., Broznick, Jr. J.T., Valladares, O., Bucan, M. and Birnbaum, M.J. (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7: 1085-1094.

Mu, J., Barton, E.R. and Birnbaum, M.J. (2003) Selective suppression of AMP-activated protein kinase in skeletal muscle: update on ‘lazy mice’. Biochem. Soc. Trans. 31: 236-241.

Mullane, K. and Bullough, D. (1995) Harnessing an endogenous cardioprotective mechanism: cellular sources and sites of action of adenosine. J Mol Cell Cardiol. 27: 1041-1054.

Musi, N., Hirshman, M.F., Nygren, J., Svandeldt, M., Bavenholm, P., Rooyackers, O., Zhou, G., Williamson, J.M., Ljunqvist, O., Efendic, S., Moller, D.E., Thorell, A. and Goodyear, L.J. (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51: 2074-2081.

Musi, N. and Goodyear, L.J. (2003) AMP-activated protein kinase and muscle glucose uptake. Acta Physiol. Scand. 178: 337-345.

Nathan, C. (1997) Inducible nitric oxide synthase: what difference does it make? J. Clin. Invest. 100: 2417-2423.

Nagata, D., Mogi, M. and Walsh, K. (2003) AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J. Biol. Chem. 278: 31000-31006.

Nick, J.A., Young, S.K., Brown, K.K., Avdi, N.J., Arndt, P.G., Suratt, B.T., Janes, M.S., Henson, P.M. and Worthen, G.S. (2000) Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation. J. Immunol. 164: 2151-2159.

Ojaniemi, M., Glumoff, V., Harju, K., Liljeroos, M., Vuori, K., and Hallman, M. (2003) Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur. J. Immunol. 33: 597-605.

Ono, K. and Han, J. (2000) The p38 signal transduction pathway: activation and function. Cell. Signal. 12: 1-13.

Park, S. J., Lee, S. C., Hong, S. H. and Kim, H. M. (2002) Degradation of I kappa B alpha in activated RAW264.7 cells is blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Cell Biol. Toxicol. 18: 121-130.

Parkinson, J. F., Mitrovic, B. and Merrill, J. E. (1997) The role of nitric oxide in multiple sclerosis. J. Mol. Med. 75: 174-186.

Peralta, C., Bartrons, R., Serafin, A., Blazquez, C., Guzman, M., Prats, N., Xaus, C., Cutillas, B., Gelpi, E., and Rosello-Catafau, J. (2001) Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia–reperfusion injury in the rat. Hepatology 34: 1164-1173.

Perreault, M. and Marette, A. (2001) Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat. Med. 7, 1138-1143.

Pilon, G., Dallaire, P. and Marette, A. (2004) Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase. J. Biol. Chem. 279: 20767-20774.

Poli, V. (1998) The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J. Biol. Chem. 273: 29279-29282.

Quchi, N., Kobayashi, H., Kihara, S., Kumada, M., Sato, K., Inoue, T., Funahashi, T. and Walsh, K. (2004) Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 279: 1304-1309.

Rubin, L.J., Magliola, L., Feng, X., Jones, A.W. and Hale, C.C. (2004) Metabolic activation of AMP kinase in vascular smooth muscle. J. Appl. Physiol. 98: 296-306.

Russell, R.R. 3rd., Li, J., Coven, D.L., Pypaert, M., Zechner, C., Palmeri, M., Giordano, F.J., Mu, J., Birnbaum, M.J. and Young, L.H. (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J. Clin. Invest. 114: 495-503.

Sambandam, N. and Lopaschuk, G.D. (2003) AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog. Lipid Res. 42: 238-256.

Samari, H.R., Moller, M.T.N., Holden, L., Asmyhr, T. and Seglen, P.O. (2005) Stimulation of hepatocytic AMP-activated protein kinase by okadaic acid and other autophagy-suppressive toxins. Biochem. J. 386: 237-244.

Shaw, R.J., Kostmatka, M., Bardeesy, N., Hurley, R.L., Witters, L.A., Depinho, R.A. and Cantley, L.C. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. USA 101: 3329-3335.

Sheng, H., Shao, J., Dixon, D.A., Williams, C.S., Prescott, S.M., DuBois, R.N. and Beauchamp, R.D. (2000) Transforming growth factor-beta1 enhances Ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J Biol Chem. 275: 6628-6635.

Shimabukuro, M., Ohneda, M., Lee, Y. and Unger, R. H. (1997) Role of nitric oxide in obesity-induced beta cell disease. J. Clin. Invest. 100: 290-295.

Stefanelli, C., Stanic, I., Bonavita, F., Flamigni, F., Pignatti, C., Guarnieri, C. and Caldarera, C.M. (1998) Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 243: 821-826.

Stein, S.C., Woods, A., Jones, N.A., Davison, M.D. and Carling, D. (2000) The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 345: 437-443.

Stichtenoth, D. O. and Frolich, J. C. (1998) Nitric oxide and inflammatory joint diseases. Br. J. Rheumatol. 37, 246–257.

Sum, C.F., Webster, J.M., Johnson, A.B., Catalano, C., Cooper, B.G. and Taylor, R. (1992) The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes. Diabet Med. 9: 61-65.

Swain, J.L., Sabina, R.L., McHale, P.A., Greenfield, J.C.Jr and Holmes, E.W. (1982) Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol. 242: H818-826.

Tamura, M., Sebastian, S., Yang, S., Gurates, B., Fang, Z., Okamura, K. and Bulun, S.E. (2003) Induction of cyclooxygenase-2 in human endometrial stromal cells by malignant endometrial epithelial cells: evidence for the involvement of extracellularly regulated kinases and CCAAT/enhancer binding proteins. J. Mol. Endo. 31: 95-104.

Vincent, M. F., Marangos, P. J., Gruber, H. E. and Van den Berghe, G. (1991) Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes 40:1259-1266.

Wadleigh, D.J., Reddy, S.T., Kopp, E., Ghosh, S. and Herschman, H.R. (2000) Transcriptional activation of the cyclooxygenase-2 gene in endotoxin-treated RAW264.7 macrophages. J. Biol. Chem. 275: 6259-6266.

Wang, M.Y. and Unger, R.H. (2005) Role of PP2C in cardiac lipid accumulation in obese ordents and its prevention by troglitazone. Am. J. Physiol. Endo. Med. 288: E216-E221.

Weinberg, J.B. (2000) Nitric oxide synthase 2 and cyclooxygenase 2 interactions in inflammation. Immunol Res. 22: 319-341.

Winder, W. W. and Hardie, D.G. (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277: E1-E10.

Winder, W.W. (2000) AMP-activated protein kinase: possible target for treatment of type 2 diabetes. Diabetes Technol. Ther. 2: 441-448.

Wojtaszewski, J.F.P., Nielsen, J.N., Jorgensen, S.B., Frosig, C., Birk, J.B. and Richter, E.A. (2003) Transgenic models-a scientific tool to understand exercise-induced metabolism: the regulatory role of AMPK (5’-AMP-activated protein kinase) in glucose transport and glycogen synthase activity in skeletal muscle. Biochem. Soc. Trans. 31: 1290-1294.

Woods, A., Johnstone, S.R., Dickerson, K., Leiper, F.C., Fryer, L.G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M. and Carling, D. (2003a) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13: 2004-2008.

Woods, A., Vertommen, D., Neumann, D., Turk, R., Bayliss, J., Schlattner, U., Wallimann, T., Carling, D. and Rider, M.H. (2003b) Identification of phosphorylation sites in AMP-activated protein kinase for upstream AMP-activated protein kinase kinases and study of their roles by site-directed mutagenesis. J. Biol. Chem. 278: 28434-28442.

Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B.B. and Kadowaki, T. (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8: 1288-1295.

Young, M.E., Radda, G.K. and Leighton, B. (1996) Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR--an activator of AMP-activated protein kinase. FEBS Lett. 382: 43-47.

Zhao, Z.Q., Williams, M.W., Sato, H., Hudspeth, D.A., McGee, D.S., Vinten-Johansen, J. and Van Wylen, D.G. (1995) Acadesine reduces myocardial infarct size by an adenosine mediated mechanism. Cardiovasc. Res. 29: 495-505.

Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M.F., Goodyear, L.J. and Moller, D.E. (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167-1174.

Zou, M.H., Hou, X., Shi, M., Nagata, D., Walsh, K. and Cohen, R.A. (2002) Modulation by peroxynitrite of Akt- and AMP-activated protein kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J. Biol. Chem. 277: 32552-32557.

Zou, M.H., Hou, X.Y., Shi, C.M., Kirkpatick, S., Liu, F., Goldman, M.H. and Cohen, R.A. (2003) Activation of 5’-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells. J. Biol. Chem. 278: 34003-34010.

Zou, M.H., Kirkpatrick, S.S., Davis, B.J., Nelson, J.S., Wiles IV, W.G., Schlattner, U., Neumann, D., Brownlee, M., Freeman, M.B. and Goldman, M.H. (2004) Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J. Biol. Chem. 279: 43940-43951.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔