跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陶楷韻
研究生(外文):Kai-Yunn Tao
論文名稱:PAR2於內皮細胞中活化p38MAPK而誘發IL-8生成之訊息傳遞
論文名稱(外文):PAR2-induced IL-8 production through p38 MAPK in HUVECs
指導教授:鄧哲明鄧哲明引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:75
中文關鍵詞:內皮細胞
外文關鍵詞:HUVECs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Protease-activated receptor 2(PAR2)是屬於一個新發現的G protein-coupled receptors家族:protease-activated receptors(PARs)裡的第二個成員。就目前的研究看來,PAR2在發炎以及疼痛的進程中扮演著相當重要的角色,而且在內皮細胞中亦有相當高的表現量。在本篇的研究中,我們發現以具有專一選擇性的PAR2-activating peptide(PAR2-AP)刺激人類臍帶靜脈內皮細胞(human umbilical vein endothelial cells),則會明顯的誘發大量interleukin-8(IL-8)的生成,因此擬探討其中詳細的訊息傳遞機轉。
不論是利用合成的PAR2-AP,或是內生性的PAR2活化劑-胰蛋白酶(trypsin),均能以時間以及濃度相關性地增加IL-8的生成。利用選擇性的p38 MAPK(p38 mitogen-activated protein kinase )抑制劑,SB203580,亦能濃度相關性地抑制IL-8的生成。從西方墨點法的實驗結果可以發現,PAR2-AP可以顯著有意義地增加p38 MAPK的磷酸化,而對於p38 MAPK的上游以及下游的訊息蛋白激酶,MAPK kinase 3/6(MKK3/6),eIF– 4E,Mnk-1以及MAPK-activated protein kinase-2(MAPKAPK-2),也都能以時間相關性的模式增加其磷酸化。實驗中再以SB203580處理,亦觀察到除了MAPKAPK-2之外,所有蛋白激酶的磷酸化均能被顯著地抑制。PAR2-AP也能時間相關性地增加 IL-8 mRNA 的表現以及其轉錄調控因子(transcription factor)-activating transcription factor-2的活化;而這些作用均會被SB203580抑制。更進一步地,利用dominant-negative(DN)transfection的技術,發現到不論是DN p38 MAPK,DN MKK3或是 DN MKK6都能有效降低PAR2-AP所造成的IL-8增加現象。綜合上述的結果,在人類臍帶靜脈內皮細胞中,p38 MAPK訊息傳遞途徑對於PAR2所誘發的IL-8生成是相當重要的。
Protease-activated receptor 2(PAR2)is the second member of a new subfamily of G protein-coupled receptors:the protease-activated receptors(PARs). PAR2 is highly expressed on endothelial cells and plays an important role in inflammation and pain. In this study, we observed that the selective PAR2-activating peptide(PAR2-AP)could significantly induce the interleukin-8(IL-8)production in human umbilical vein endothelial cells(HUVECs). Therefore, the signaling pathway involved in PAR2-induced endothelial IL-8 production was studied in this paper.
Both the PAR2-AP and endogenous PAR2 activator, trypsin, caused concentration- and time-dependent increase of endothelial IL-8 production and this effect was concentration-dependently attenuated by the selective p38 mitogen-activated protein kinase(p38 MAPK)inhibitor, SB203580. Western blotting analysis showed that PAR2-AP induced the phosphorylation of p38 MAPK and its upstream and downstream protein kinases, including MAPK kinase 3/6(MKK3/6), eIF–4E, Mnk-1 and MAPK-activated protein kinase-2(MAPKAPK-2), in a time-dependent manner. SB203580 exhibited a significantly decreased phosphorylation of these protein kinases except for MAPKAPK-2. In addition, PAR2-AP caused an elevation of IL-8 mRNA expression and its transcription factor, activating transcription factor-2 activation. As expectedly, these signals were also suppressed by SB203580 in a concentration-dependent manner. Furthermore, introduction of dominant-negative vectors targeting on p38 MAPK, MKK3 and MKK6 resulted in abolishing the IL-8 production by PAR2-AP. In conclusion, our data suggest that the p38 MAPK pathway is important for PAR2-induced IL-8 production in HUVECs.
目錄
縮寫表…………………………………………………………1
中文摘要….………………………………………………….3
英文摘要……………………………………………………..5
緒言…………………………………………………………..7
文獻回顧………………………………………………..7
研究動機與目的……………………………………….23
材料與方法………………………………………………….24
結果………………………………………………………….36
討論………………………………………………………….44
圖表………………………………………………………….50
參考文獻…………………………………………………….63
Aihara,M., Tsuchimoto,D., Takizawa,H., Azuma,A., Wakebe,H., Ohmoto,Y., Imagawa,K., Kikuchi,M., Mukaida,N., and Matsushima,K. (1997). Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect. Immun. 65, 3218-3224.
al-Ani, B., Saifeddine,M., and Hollenberg,M.D. (1995). Detection of functional receptors for the proteinase-activated-receptor-2-activating polypeptide, SLIGRL-NH2, in rat vascular and gastric smooth muscle. Can. J. Physiol Pharmacol. 73, 1203-1207.
Alcorn, M.J., Booth,J.L., Coggeshall,K.M., and Metcalf,J.P. (2001). Adenovirus type 7 induces interleukin-8 production via activation of extracellular regulated kinase 1/2. J. Virol. 75, 6450-6459.
Asokananthan, N., Graham,P.T., Fink,J., Knight,D.A., Bakker,A.J., McWilliam,A.S., Thompson,P.J., and Stewart,G.A. (2002). Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J. Immunol. 168, 3577-3585.
Baeuerle, P.A. and Baltimore,D. (1996a). NF-kappa B: ten years after. Cell 87, 13-20.
Baggiolini, M., Dewald,B., and Moser,B. (1997). Human chemokines: an update. Annu. Rev. Immunol. 15, 675-705.
Belham, C.M., Tate,R.J., Scott,P.H., Pemberton,A.D., Miller,H.R., Wadsworth,R.M., Gould,G.W., and Plevin,R. (1996). Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases. Biochem. J. 320 ), 939-946.
Bohm,S.K., Kong,W., Bromme,D., Smeekens,S.P., Anderson,D.C., Connolly,A., Kahn,M., Nelken,N.A., Coughlin,S.R., Payan,D.G., and Bunnett,N.W. (1996). Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem. J. 314 ( Pt 3), 1009-1016.
Carbajal, J.M., Gratrix,M.L., Yu,C.H., and Schaeffer,R.C., Jr. (2000). ROCK mediates thrombin''s endothelial barrier dysfunction. Am. J. Physiol Cell Physiol 279, C195-C204.
Carlos, T.M. and Harlan,J.M. (1994b). Leukocyte-endothelial adhesion molecules. Blood 84, 2068-2101.
Carveth, H.J., Bohnsack,J.F., McIntyre,T.M., Baggiolini,M., Prescott,S.M., and Zimmerman,G.A. (1989b). Neutrophil activating factor (NAF) induces polymorphonuclear leukocyte adherence to endothelial cells and to subendothelial matrix proteins. Biochem. Biophys. Res. Commun. 162, 387-393.
Chen, L.B. and Buchanan,J.M. (1975). Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc. Natl. Acad. Sci. U. S. A 72, 131-135.
Cicala,C., Pinto,A., Bucci,M., Sorrentino,R., Walker,B., Harriot,P., Cruchley,A., Kapas,S., Howells,G.L., and Cirino,G. (1999). Protease-activated receptor-2 involvement in hypotension in normal and endotoxemic rats in vivo. Circulation 99, 2590-2597.
Clark, A.R., Dean,J.L., and Saklatvala,J. (2003). Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett. 546, 37-44.
Cocks, T.M. and Moffatt,J.D. (2000). Protease-activated receptors: sentries for inflammation? Trends Pharmacol. Sci. 21, 103-108.
Coelho, A.M., Ossovskaya,V., and Bunnett,N.W. (2003). Proteinase-activated receptor-2: physiological and pathophysiological roles. Curr. Med. Chem. Cardiovasc. Hematol. Agents 1, 61-72.
Corvera,C.U., Dery,O., McConalogue,K., Gamp,P., Thoma,M., Al-Ani,B., Caughey,G.H., Hollenberg,M.D., and Bunnett,N.W. (1999). Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and -2. J. Physiol 517 , 741-756.
Coughlin, S.R. (2000). Thrombin signalling and protease-activated receptors. Nature 407, 258-264.
D''Andrea,M.R., Derian,C.K., Leturcq,D., Baker,S.M., Brunmark,A., Ling,P., Darrow,A.L., Santulli,R.J., Brass,L.F., and ndrade-Gordon,P. (1998). Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J. Histochem. Cytochem. 46, 157-164.
Damiano, B.P., Cheung,W.M., Mitchell,J.A., and Falotico,R. (1996). Cardiovascular actions of thrombin receptor activation in vivo. J. Pharmacol. Exp. Ther. 279, 1365-1378.
DeFea, K.A., Zalevsky,J., Thoma,M.S., Dery,O., Mullins,R.D., and Bunnett,N.W. (2000b). beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol. 148, 1267-1281.
Detmers, P.A., Lo,S.K., Olsen-Egbert,E., Walz,A., Baggiolini,M., and Cohn,Z.A. (1990). Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J. Exp. Med. 171, 1155-1162.
Fanger, G.R., Gerwins,P., Widmann,C., Jarpe,M.B., and Johnson,G.L. (1997). MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr. Opin. Genet. Dev. 7, 67-74.
Fox, M.T., Harriott,P., Walker,B., and Stone,S.R. (1997). Identification of potential activators of proteinase-activated receptor-2. FEBS Lett. 417, 267-269.
Gerszten,R.E., Garcia-Zepeda,E.A., Lim,Y.C., Yoshida,M., Ding,H.A., Gimbrone,M.A., Jr., Luster,A.D., Luscinskas,F.W., and Rosenzweig,A. (1999). MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398, 718-723.
Goebeler, M., Kilian,K., Gillitzer,R., Kunz,M., Yoshimura,T., Brocker,E.B., Rapp,U.R., and Ludwig,S. (1999). The MKK6/p38 stress kinase cascade is critical for tumor necrosis factor-alpha-induced expression of monocyte-chemoattractant protein-1 in endothelial cells. Blood 93, 857-865.
Griffin, C.T., Srinivasan,Y., Zheng,Y.W., Huang,W., and Coughlin,S.R. (2001). A role for thrombin receptor signaling in endothelial cells during embryonic development. Science 293, 1666-1670.
Hale, K.K., Trollinger,D., Rihanek,M., and Manthey,C.L. (1999c). Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J. Immunol. 162, 4246-4252.
Hammaker, D., Sweeney,S., and Firestein,G.S. (2003). Signal transduction networks in rheumatoid arthritis. Ann. Rheum. Dis. 62 Suppl 2, ii86-ii89.
Han, J., Lee, J.D., Bibbs,L., and Ulevitch,R.J. (1994). A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808-811.
Han, J., Lee,J.D., Jiang,Y., Li,Z., Feng,L., and Ulevitch,R.J. (1996). Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J. Biol. Chem. 271, 2886-2891.
Hashimoto, S., Matsumoto,K., Gon,Y., Maruoka,S., Takeshita,I., Hayashi,S., Koura,T., Kujime,K., and Horie,T. (1999). p38 Mitogen-activated protein kinase regulates IL-8 expression in human pulmonary vascular endothelial cells. Eur. Respir. J. 13, 1357-1364.
Hebert,C.A., Luscinskas,F.W., Kiely,J.M., Luis,E.A., Darbonne,W.C., Bennett,G.L., Liu,C.C., Obin,M.S., Gimbrone,M.A., Jr., and Baker,J.B. (1990). Endothelial and leukocyte forms of IL-8. Conversion by thrombin and interactions with neutrophils. J. Immunol. 145, 3033-3040.
Hirano, K. and Kanaide,H. (2003). Role of protease-activated receptors in the vascular system. J. Atheroscler. Thromb. 10, 211-225.
Hirota,Y., Osuga,Y., Hirata,T., Koga,K., Yoshino,O., Harada,M., Morimoto,C., Nose,E., Yano,T., Tsutsumi,O., and Taketani,Y. (2005). Evidence for the presence of protease-activated receptor 2 and its possible implication in remodeling of human endometrium. J. Clin. Endocrinol. Metab 90, 1662-1669.
Hjortoe, G.M., Petersen,L.C., Albrektsen,T., Sorensen,B.B., Norby,P.L., Mandal,S.K., Pendurthi,U.R., and Rao,L.V. (2004). Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood 103, 3029-3037.
Hoffmann, E., ttrich-Breiholz,O., Holtmann,H., and Kracht,M. (2002b). Multiple control of interleukin-8 gene expression. J. Leukoc. Biol. 72, 847-855.
Hogg, N., Henderson, R., Leitinger,B., McDowall,A., Porter,J., and Stanley,P. (2002). Mechanisms contributing to the activity of integrins on leukocytes. Immunol. Rev. 186, 164-171.
Hollenberg, M.D. (1999). Protease-activated receptors: PAR4 and counting: how long is the course? Trends Pharmacol. Sci. 20, 271-273.
Huber, A.R., Kunkel,S.L., Todd,R.F., III, and Weiss,S.J. (1991). Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 254, 99-102.
Hwa, J.J., Ghibaudi,L., Williams,P., Chintala,M., Zhang,R., Chatterjee,M., and Sybertz,E. (1996). Evidence for the presence of a proteinase-activated receptor distinct from the thrombin receptor in vascular endothelial cells. Circ. Res. 78, 581-588.
Iguchi,A., Kitajima,I., Yamakuchi,M., Ueno,S., Aikou,T., Kubo,T., Matsushima,K., Mukaida,N., and Maruyama,I. (2000). PEA3 and AP-1 are required for constitutive IL-8 gene expression in hepatoma cells. Biochem. Biophys. Res. Commun. 279, 166-171.
Ishihara, H., Connolly, A.J., Zeng,D., Kahn,M.L., Zheng,Y.W., Timmons,C., Tram,T., and Coughlin,S.R. (1997). Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502-506.
Iwakiri, K., Ghazizadeh, M., Jin,E., Fujiwara,M., Takemura,T., Takezaki,S., Kawana,S., Yasuoka,S., and Kawanami,O. (2004). Human airway trypsin-like protease induces PAR-2-mediated IL-8 release in psoriasis vulgaris. J. Invest Dermatol. 122, 937-944.
Johnson, G.L. and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912.
Kahn,M.L., Zheng,Y.W., Huang,W., Bigornia,V., Zeng,D., Moff,S., Farese,R.V., Jr., Tam,C., and Coughlin,S.R. (1998). A dual thrombin receptor system for platelet activation. Nature 394, 690-694.
Karin, M., Liu,Z., and Zandi,E. (1997). AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240-246.
Kawabata, A. and Kuroda, R. (2000). Protease-activated receptor (PAR), a novel family of G protein-coupled seven trans-membrane domain receptors: activation mechanisms and physiological roles. Jpn. J. Pharmacol. 82, 171-174.
Kawabata, A., Kuroda,R., Minami,T., Kataoka,K., and Taneda,M. (1998). Increased vascular permeability by a specific agonist of protease-activated receptor-2 in rat hindpaw. Br. J. Pharmacol. 125, 419-422.
Klezovitch, O., Edelstein,C., and Scanu,A.M. (2001). Stimulation of interleukin-8 production in human THP-1 macrophages by apolipoprotein(a). Evidence for a critical involvement of elements in its C-terminal domain. J. Biol. Chem. 276, 46864-46869.
Ko, Y.C., Mukaida,N., Ishiyama,S., Tokue,A., Kawai,T., Matsushima,K., and Kasahara,T. (1993). Elevated interleukin-8 levels in the urine of patients with urinary tract infections. Infect. Immun. 61, 1307-1314.
Koch, A.E. (2005). Chemokines and their receptors in rheumatoid arthritis: future targets? Arthritis Rheum. 52, 710-721.
Kong, W., McConalogue,K., Khitin,L.M., Hollenberg,M.D., Payan,D.G., Bohm,S.K., and Bunnett,N.W. (1997b). Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc. Natl. Acad. Sci. U. S. A 94, 8884-8889.
Kumar, S., Boehm,J., and Lee,J.C. (2003a). p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2, 717-726.
Lan, R.S., Stewart,G.A., and Henry,P.J. (2002). Role of protease-activated receptors in airway function: a target for therapeutic intervention? Pharmacol. Ther. 95, 239-257.
Lang, R., Song,P.I., Legat,F.J., Lavker,R.M., Harten,B., Kalden,H., Grady,E.F., Bunnett,N.W., Armstrong,C.A., and Ansel,J.C. (2003). Human corneal epithelial cells express functional PAR-1 and PAR-2. Invest Ophthalmol. Vis. Sci. 44, 99-105.
Larsen, C.G., Anderson,A.O., Appella,E., Oppenheim,J.J., and Matsushima,K. (1989). The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243, 1464-1466.
Ley, K. (2001). Pathways and bottlenecks in the web of inflammatory adhesion molecules and chemoattractants. Immunol. Res. 24, 87-95.
Lindner, J.R., Kahn,M.L., Coughlin,S.R., Sambrano,G.R., Schauble,E., Bernstein,D., Foy,D., Hafezi-Moghadam,A., and Ley,K. (2000). Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J. Immunol. 165, 6504-6510.
Lockwood, C.J., Paidas,M., Krikun,G., Koopman,L., Masch,R., Kuczynski,E., Kliman,H., Baergen,R.N., and Schatz,F. (2005). Inflammatory Cytokine and Thrombin Regulation of Interleukin-8 and Intercellular adhesion molecule-1 expression in First Trimester Human Decidua. J. Clin. Endocrinol. Metab.
Luster, A.D. (1998). Chemokines--chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338, 436-445.
Macfarlane, S.R., Seatter,M.J., Kanke,T., Hunter,G.D., and Plevin,R. (2001). Proteinase-activated receptors. Pharmacol. Rev. 53, 245-282.
Matsushima, K., Morishita,K., Yoshimura,T., Lavu,S., Kobayashi,Y., Lew,W., Appella,E., Kung,H.F., Leonard,E.J., and Oppenheim,J.J. (1988). Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J. Exp. Med. 167, 1883-1893.
McNamara, C.A., Sarembock,I.J., Gimple,L.W., Fenton,J.W., Coughlin,S.R., and Owens,G.K. (1993). Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J. Clin. Invest 91, 94-98.
Milia, A.F., Salis,M.B., Stacca,T., Pinna,A., Madeddu,P., Trevisani,M., Geppetti,P., and Emanueli,C. (2002). Protease-activated receptor-2 stimulates angiogenesis and accelerates hemodynamic recovery in a mouse model of hindlimb ischemia. Circ. Res. 91, 346-352.
Molino, M., Barnathan,E.S., Numerof,R., Clark,J., Dreyer,M., Cumashi,A., Hoxie,J.A., Schechter,N., Woolkalis,M., and Brass,L.F. (1997). Interactions of mast cell tryptase with thrombin receptors and PAR-2. J. Biol. Chem. 272, 4043-4049.
Moriguchi, T., Kuroyanagi,N., Yamaguchi,K., Gotoh,Y., Irie,K., Kano,T., Shirakabe,K., Muro,Y., Shibuya,H., Matsumoto,K., Nishida,E., and Hagiwara,M. (1996). A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J. Biol. Chem. 271, 13675-13679.
Mukaida, N. (2000). Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int. J. Hematol. 72, 391-398.
Mukaida, N. (2003). Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am. J. Physiol Lung Cell Mol. Physiol 284, L566-L577.
Mukaida, N., Harada,A., Yasumoto,K., and Matsushima,K. (1992). Properties of pro-inflammatory cell type-specific leukocyte chemotactic cytokines, interleukin 8 (IL-8) and monocyte chemotactic and activating factor (MCAF). Microbiol. Immunol. 36, 773-789.
Muller,W .A. (2002a). Leukocyte-endothelial cell interactions in the inflammatory response. Lab Invest 82, 521-533.
Nystedt, S., Emilsson,K., Larsson,A.K., Strombeck,B., and Sundelin,J. (1995a). Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur. J. Biochem. 232, 84-89.
Nystedt, S., Larsson,A.K., Aberg,H., and Sundelin,J. (1995c). The mouse proteinase-activated receptor-2 cDNA and gene. Molecular cloning and functional expression. J. Biol. Chem. 270, 5950-5955.
Ono, K. and Han,J. (2000b). The p38 signal transduction pathway: activation and function. Cell Signal. 12, 1-13.
Ossovskaya,V.S. and Bunnett,N.W. (2004b). Protease-activated receptors: contribution to physiology and disease. Physiol Rev. 84, 579-621.
Page, K., Strunk,V.S., and Hershenson,M.B. (2003a). Cockroach proteases increase IL-8 expression in human bronchial epithelial cells via activation of protease-activated receptor (PAR)-2 and extracellular-signal-regulated kinase. J. Allergy Clin. Immunol. 112, 1112-1118.
Pargellis, C. and Regan,J. (2003). Inhibitors of p38 mitogen-activated protein kinase for the treatment of rheumatoid arthritis. Curr. Opin. Investig. Drugs 4, 566-571.
Pizurki, L., Zhou,Z., Glynos,K., Roussos,C., and Papapetropoulos,A. (2003). Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production. Br. J. Pharmacol. 139, 329-336.
Prichett, W., Hand,A., Sheilds,J., and Dunnington,D. (1995). Mechanism of action of bicyclic imidazoles defines a translational regulatory pathway for tumor necrosis factor alpha. J. Inflamm. 45, 97-105.
Reunanen, N., Li,S.P., Ahonen,M., Foschi,M., Han,J., and Kahari,V.M. (2002). Activation of p38 alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J. Biol. Chem. 277, 32360-32368.

Ricciardolo,F.L., Steinhoff,M., Amadesi,S., Guerrini,R., Tognetto,M., Trevisani,M., Creminon,C., Bertrand,C., Bunnett,N.W., Fabbri,L.M., Salvadori,S., and Geppetti,P. (2000). Presence and bronchomotor activity of protease-activated receptor-2 in guinea pig airways. Am. J. Respir. Crit Care Med. 161, 1672-1680.
Ridley, S.H., Sarsfield,S.J., Lee,J.C., Bigg,H.F., Cawston,T.E., Taylor,D.J., DeWitt,D.L., and Saklatvala,J. (1997). Actions of IL-1 are selectively controlled by p38 mitogen-activated protein kinase: regulation of prostaglandin H synthase-2, metalloproteinases, and IL-6 at different levels. J. Immunol. 158, 3165-3173.
Roy, S.S., Saifeddine,M., Loutzenhiser,R., Triggle,C.R., and Hollenberg,M.D. (1998). Dual endothelium-dependent vascular activities of proteinase-activated receptor-2-activating peptides: evidence for receptor heterogeneity. Br. J. Pharmacol. 123, 1434-1440.
Saifeddine, M., al-Ani,B., Cheng,C.H., Wang,L., and Hollenberg,M.D. (1996). Rat proteinase-activated receptor-2 (PAR-2): cDNA sequence and activity of receptor-derived peptides in gastric and vascular tissue. Br. J. Pharmacol. 118, 521-530.
Saifeddine, M., Roy,S.S., Al-Ani,B., Triggle,C.R., and Hollenberg,M.D. (1998). Endothelium-dependent contractile actions of proteinase-activated receptor-2-activating peptides in human umbilical vein: release of a contracting factor via a novel receptor. Br. J. Pharmacol. 125, 1445-1454.
Saklatvala, J. (2004). The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr. Opin. Pharmacol. 4, 372-377.
Salituro, F.G., Germann,U.A., Wilson,K.P., Bemis,G.W., Fox,T., and Su,M.S. (1999). Inhibitors of p38 MAP kinase: therapeutic intervention in cytokine-mediated diseases. Curr. Med. Chem. 6, 807-823.
Sano, Y ., Harada,J., Tashiro,S., Gotoh-Mandeville,R., Maekawa,T., and Ishii,S. (1999). ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. J. Biol. Chem. 274, 8949-8957.
Schmitz, M.L., Bacher,S., and Kracht,M. (2001). I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem. Sci. 26, 186-190.
Shapiro, L. and Dinarello,C.A. (1995). Osmotic regulation of cytokine synthesis in vitro. Proc. Natl. Acad. Sci. U. S. A 92, 12230-12234.
Smart, S.J. and Casale,T.B. (1994). TNF-alpha-induced transendothelial neutrophil migration is IL-8 dependent. Am. J. Physiol 266, L238-L245.
Smith, W.B., Gamble,J.R., Clark-Lewis,I., and Vadas,M.A. (1991). Interleukin-8 induces neutrophil transendothelial migration. Immunology 72, 65-72.
Stein, B., Brady,H., Yang,M.X., Young,D.B., and Barbosa,M.S. (1996). Cloning and characterization of MEK6, a novel member of the mitogen-activated protein kinase kinase cascade. J. Biol. Chem. 271, 11427-11433.
Steinberg, S.F. (2005). The cardiovascular actions of protease-activated receptors. Mol. Pharmacol. 67, 2-11.
Sweeney, S.E. and Firestein,G.S. (2004). Rheumatoid arthritis: regulation of synovial inflammation. Int. J. Biochem. Cell Biol. 36, 372-378.
Tibbles, L.A. and Woodgett,J.R. (1999). The stress-activated protein kinase pathways. Cell Mol. Life Sci. 55, 1230-1254.
Ulbrich, H., Eriksson,E.E., and Lindbom,L. (2003). Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol. Sci. 24, 640-647.
Utgaard, J.O., Jahnsen,F.L., Bakka,A., Brandtzaeg,P., and Haraldsen,G. (1998). Rapid secretion of prestored interleukin 8 from Weibel-Palade bodies of microvascular endothelial cells. J. Exp. Med. 188, 1751-1756.
van Nieuw Amerongen,G.P., van,D.S., Vermeer,M.A., Collard,J.G., and van,H., V (2000a). Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ. Res. 87, 335-340.
van Nieuw Amerongen,G.P., Vermeer,M.A., and van,H., V (2000b). Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler. Thromb. Vasc. Biol. 20, E127-E133.
Van, D.J., Decock,B., Conings,R., Lenaerts,J.P., Opdenakker,G., and Billiau,A. (1989a). The chemotactic activity for granulocytes produced by virally infected fibroblasts is identical to monocyte-derived interleukin 8. Eur. J. Immunol. 19, 1189-1194.
Van, D.J., Van,B.J., Conings,R., Decock,B., and Billiau,A. (1989b). Purification of granulocyte chemotactic peptide/interleukin-8 reveals N-terminal sequence heterogeneity similar to that of beta-thromboglobulin. Eur. J. Biochem. 181, 337-344.
Vergnolle, N. (1999a). Proteinase-activated receptor-2-activating peptides induce leukocyte rolling, adhesion, and extravasation in vivo. J. Immunol. 163, 5064-5069.
Vergnolle, N., Hollenberg,M.D., Sharkey,K.A., and Wallace,J.L. (1999b). Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. Br. J. Pharmacol. 127, 1083-1090.
Vergnolle, N., Macnaughton,W.K., Al-Ani,B., Saifeddine,M., Wallace,J.L., and Hollenberg,M.D. (1998). Proteinase-activated receptor 2 (PAR2)-activating peptides: identification of a receptor distinct from PAR2 that regulates intestinal transport. Proc. Natl. Acad. Sci. U. S. A 95, 7766-7771.
Vu, T.K., Hung,D.T., Wheaton,V.I., and Coughlin,S.R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057-1068.
Whitmarsh, A.J., Woolnough,M.J., Moore,H.D., Hornby,D.P., and Barratt,C.L. (1996). Biological activity of recombinant human ZP3 produced in vitro: potential for a sperm function test. Mol. Hum. Reprod. 2, 911-919.
Xu,W.F., Andersen,H., Whitmore,T.E., Presnell,S.R., Yee,D.P., Ching,A., Gilbert,T., Davie,E.W., and Foster,D.C. (1998). Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci. U. S. A 95, 6642-6646.
Yang, C.Y., Huang,C.C., Chang,I.C., Lee,C.H., Tsai,J.T., and Ko,Y.C. (1993). Pulmonary function and respiratory symptoms of Portland cement workers in southern Taiwan. Gaoxiong. Yi. Xue. Ke. Xue. Za Zhi. 9, 186-192.
Yoshimura, T., Matsushima,K., Tanaka,S., Robinson,E.A., Appella,E., Oppenheim,J.J., and Leonard,E.J. (1987). Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc. Natl. Acad. Sci. U. S. A 84, 9233-9237.
Young, P., McDonnell,P., Dunnington,D., Hand,A., Laydon,J., and Lee,J. (1993). Pyridinyl imidazoles inhibit IL-1 and TNF production at the protein level. Agents Actions 39 Spec No, C67-C69.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top