|
Aihara,M., Tsuchimoto,D., Takizawa,H., Azuma,A., Wakebe,H., Ohmoto,Y., Imagawa,K., Kikuchi,M., Mukaida,N., and Matsushima,K. (1997). Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect. Immun. 65, 3218-3224. al-Ani, B., Saifeddine,M., and Hollenberg,M.D. (1995). Detection of functional receptors for the proteinase-activated-receptor-2-activating polypeptide, SLIGRL-NH2, in rat vascular and gastric smooth muscle. Can. J. Physiol Pharmacol. 73, 1203-1207. Alcorn, M.J., Booth,J.L., Coggeshall,K.M., and Metcalf,J.P. (2001). Adenovirus type 7 induces interleukin-8 production via activation of extracellular regulated kinase 1/2. J. Virol. 75, 6450-6459. Asokananthan, N., Graham,P.T., Fink,J., Knight,D.A., Bakker,A.J., McWilliam,A.S., Thompson,P.J., and Stewart,G.A. (2002). Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J. Immunol. 168, 3577-3585. Baeuerle, P.A. and Baltimore,D. (1996a). NF-kappa B: ten years after. Cell 87, 13-20. Baggiolini, M., Dewald,B., and Moser,B. (1997). Human chemokines: an update. Annu. Rev. Immunol. 15, 675-705. Belham, C.M., Tate,R.J., Scott,P.H., Pemberton,A.D., Miller,H.R., Wadsworth,R.M., Gould,G.W., and Plevin,R. (1996). Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases. Biochem. J. 320 ), 939-946. Bohm,S.K., Kong,W., Bromme,D., Smeekens,S.P., Anderson,D.C., Connolly,A., Kahn,M., Nelken,N.A., Coughlin,S.R., Payan,D.G., and Bunnett,N.W. (1996). Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem. J. 314 ( Pt 3), 1009-1016. Carbajal, J.M., Gratrix,M.L., Yu,C.H., and Schaeffer,R.C., Jr. (2000). ROCK mediates thrombin''s endothelial barrier dysfunction. Am. J. Physiol Cell Physiol 279, C195-C204. Carlos, T.M. and Harlan,J.M. (1994b). Leukocyte-endothelial adhesion molecules. Blood 84, 2068-2101. Carveth, H.J., Bohnsack,J.F., McIntyre,T.M., Baggiolini,M., Prescott,S.M., and Zimmerman,G.A. (1989b). Neutrophil activating factor (NAF) induces polymorphonuclear leukocyte adherence to endothelial cells and to subendothelial matrix proteins. Biochem. Biophys. Res. Commun. 162, 387-393. Chen, L.B. and Buchanan,J.M. (1975). Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc. Natl. Acad. Sci. U. S. A 72, 131-135. Cicala,C., Pinto,A., Bucci,M., Sorrentino,R., Walker,B., Harriot,P., Cruchley,A., Kapas,S., Howells,G.L., and Cirino,G. (1999). Protease-activated receptor-2 involvement in hypotension in normal and endotoxemic rats in vivo. Circulation 99, 2590-2597. Clark, A.R., Dean,J.L., and Saklatvala,J. (2003). Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett. 546, 37-44. Cocks, T.M. and Moffatt,J.D. (2000). Protease-activated receptors: sentries for inflammation? Trends Pharmacol. Sci. 21, 103-108. Coelho, A.M., Ossovskaya,V., and Bunnett,N.W. (2003). Proteinase-activated receptor-2: physiological and pathophysiological roles. Curr. Med. Chem. Cardiovasc. Hematol. Agents 1, 61-72. Corvera,C.U., Dery,O., McConalogue,K., Gamp,P., Thoma,M., Al-Ani,B., Caughey,G.H., Hollenberg,M.D., and Bunnett,N.W. (1999). Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and -2. J. Physiol 517 , 741-756. Coughlin, S.R. (2000). Thrombin signalling and protease-activated receptors. Nature 407, 258-264. D''Andrea,M.R., Derian,C.K., Leturcq,D., Baker,S.M., Brunmark,A., Ling,P., Darrow,A.L., Santulli,R.J., Brass,L.F., and ndrade-Gordon,P. (1998). Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J. Histochem. Cytochem. 46, 157-164. Damiano, B.P., Cheung,W.M., Mitchell,J.A., and Falotico,R. (1996). Cardiovascular actions of thrombin receptor activation in vivo. J. Pharmacol. Exp. Ther. 279, 1365-1378. DeFea, K.A., Zalevsky,J., Thoma,M.S., Dery,O., Mullins,R.D., and Bunnett,N.W. (2000b). beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol. 148, 1267-1281. Detmers, P.A., Lo,S.K., Olsen-Egbert,E., Walz,A., Baggiolini,M., and Cohn,Z.A. (1990). Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J. Exp. Med. 171, 1155-1162. Fanger, G.R., Gerwins,P., Widmann,C., Jarpe,M.B., and Johnson,G.L. (1997). MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr. Opin. Genet. Dev. 7, 67-74. Fox, M.T., Harriott,P., Walker,B., and Stone,S.R. (1997). Identification of potential activators of proteinase-activated receptor-2. FEBS Lett. 417, 267-269. Gerszten,R.E., Garcia-Zepeda,E.A., Lim,Y.C., Yoshida,M., Ding,H.A., Gimbrone,M.A., Jr., Luster,A.D., Luscinskas,F.W., and Rosenzweig,A. (1999). MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398, 718-723. Goebeler, M., Kilian,K., Gillitzer,R., Kunz,M., Yoshimura,T., Brocker,E.B., Rapp,U.R., and Ludwig,S. (1999). The MKK6/p38 stress kinase cascade is critical for tumor necrosis factor-alpha-induced expression of monocyte-chemoattractant protein-1 in endothelial cells. Blood 93, 857-865. Griffin, C.T., Srinivasan,Y., Zheng,Y.W., Huang,W., and Coughlin,S.R. (2001). A role for thrombin receptor signaling in endothelial cells during embryonic development. Science 293, 1666-1670. Hale, K.K., Trollinger,D., Rihanek,M., and Manthey,C.L. (1999c). Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J. Immunol. 162, 4246-4252. Hammaker, D., Sweeney,S., and Firestein,G.S. (2003). Signal transduction networks in rheumatoid arthritis. Ann. Rheum. Dis. 62 Suppl 2, ii86-ii89. Han, J., Lee, J.D., Bibbs,L., and Ulevitch,R.J. (1994). A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808-811. Han, J., Lee,J.D., Jiang,Y., Li,Z., Feng,L., and Ulevitch,R.J. (1996). Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J. Biol. Chem. 271, 2886-2891. Hashimoto, S., Matsumoto,K., Gon,Y., Maruoka,S., Takeshita,I., Hayashi,S., Koura,T., Kujime,K., and Horie,T. (1999). p38 Mitogen-activated protein kinase regulates IL-8 expression in human pulmonary vascular endothelial cells. Eur. Respir. J. 13, 1357-1364. Hebert,C.A., Luscinskas,F.W., Kiely,J.M., Luis,E.A., Darbonne,W.C., Bennett,G.L., Liu,C.C., Obin,M.S., Gimbrone,M.A., Jr., and Baker,J.B. (1990). Endothelial and leukocyte forms of IL-8. Conversion by thrombin and interactions with neutrophils. J. Immunol. 145, 3033-3040. Hirano, K. and Kanaide,H. (2003). Role of protease-activated receptors in the vascular system. J. Atheroscler. Thromb. 10, 211-225. Hirota,Y., Osuga,Y., Hirata,T., Koga,K., Yoshino,O., Harada,M., Morimoto,C., Nose,E., Yano,T., Tsutsumi,O., and Taketani,Y. (2005). Evidence for the presence of protease-activated receptor 2 and its possible implication in remodeling of human endometrium. J. Clin. Endocrinol. Metab 90, 1662-1669. Hjortoe, G.M., Petersen,L.C., Albrektsen,T., Sorensen,B.B., Norby,P.L., Mandal,S.K., Pendurthi,U.R., and Rao,L.V. (2004). Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood 103, 3029-3037. Hoffmann, E., ttrich-Breiholz,O., Holtmann,H., and Kracht,M. (2002b). Multiple control of interleukin-8 gene expression. J. Leukoc. Biol. 72, 847-855. Hogg, N., Henderson, R., Leitinger,B., McDowall,A., Porter,J., and Stanley,P. (2002). Mechanisms contributing to the activity of integrins on leukocytes. Immunol. Rev. 186, 164-171. Hollenberg, M.D. (1999). Protease-activated receptors: PAR4 and counting: how long is the course? Trends Pharmacol. Sci. 20, 271-273. Huber, A.R., Kunkel,S.L., Todd,R.F., III, and Weiss,S.J. (1991). Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 254, 99-102. Hwa, J.J., Ghibaudi,L., Williams,P., Chintala,M., Zhang,R., Chatterjee,M., and Sybertz,E. (1996). Evidence for the presence of a proteinase-activated receptor distinct from the thrombin receptor in vascular endothelial cells. Circ. Res. 78, 581-588. Iguchi,A., Kitajima,I., Yamakuchi,M., Ueno,S., Aikou,T., Kubo,T., Matsushima,K., Mukaida,N., and Maruyama,I. (2000). PEA3 and AP-1 are required for constitutive IL-8 gene expression in hepatoma cells. Biochem. Biophys. Res. Commun. 279, 166-171. Ishihara, H., Connolly, A.J., Zeng,D., Kahn,M.L., Zheng,Y.W., Timmons,C., Tram,T., and Coughlin,S.R. (1997). Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502-506. Iwakiri, K., Ghazizadeh, M., Jin,E., Fujiwara,M., Takemura,T., Takezaki,S., Kawana,S., Yasuoka,S., and Kawanami,O. (2004). Human airway trypsin-like protease induces PAR-2-mediated IL-8 release in psoriasis vulgaris. J. Invest Dermatol. 122, 937-944. Johnson, G.L. and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912. Kahn,M.L., Zheng,Y.W., Huang,W., Bigornia,V., Zeng,D., Moff,S., Farese,R.V., Jr., Tam,C., and Coughlin,S.R. (1998). A dual thrombin receptor system for platelet activation. Nature 394, 690-694. Karin, M., Liu,Z., and Zandi,E. (1997). AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240-246. Kawabata, A. and Kuroda, R. (2000). Protease-activated receptor (PAR), a novel family of G protein-coupled seven trans-membrane domain receptors: activation mechanisms and physiological roles. Jpn. J. Pharmacol. 82, 171-174. Kawabata, A., Kuroda,R., Minami,T., Kataoka,K., and Taneda,M. (1998). Increased vascular permeability by a specific agonist of protease-activated receptor-2 in rat hindpaw. Br. J. Pharmacol. 125, 419-422. Klezovitch, O., Edelstein,C., and Scanu,A.M. (2001). Stimulation of interleukin-8 production in human THP-1 macrophages by apolipoprotein(a). Evidence for a critical involvement of elements in its C-terminal domain. J. Biol. Chem. 276, 46864-46869. Ko, Y.C., Mukaida,N., Ishiyama,S., Tokue,A., Kawai,T., Matsushima,K., and Kasahara,T. (1993). Elevated interleukin-8 levels in the urine of patients with urinary tract infections. Infect. Immun. 61, 1307-1314. Koch, A.E. (2005). Chemokines and their receptors in rheumatoid arthritis: future targets? Arthritis Rheum. 52, 710-721. Kong, W., McConalogue,K., Khitin,L.M., Hollenberg,M.D., Payan,D.G., Bohm,S.K., and Bunnett,N.W. (1997b). Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc. Natl. Acad. Sci. U. S. A 94, 8884-8889. Kumar, S., Boehm,J., and Lee,J.C. (2003a). p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2, 717-726. Lan, R.S., Stewart,G.A., and Henry,P.J. (2002). Role of protease-activated receptors in airway function: a target for therapeutic intervention? Pharmacol. Ther. 95, 239-257. Lang, R., Song,P.I., Legat,F.J., Lavker,R.M., Harten,B., Kalden,H., Grady,E.F., Bunnett,N.W., Armstrong,C.A., and Ansel,J.C. (2003). Human corneal epithelial cells express functional PAR-1 and PAR-2. Invest Ophthalmol. Vis. Sci. 44, 99-105. Larsen, C.G., Anderson,A.O., Appella,E., Oppenheim,J.J., and Matsushima,K. (1989). The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243, 1464-1466. Ley, K. (2001). Pathways and bottlenecks in the web of inflammatory adhesion molecules and chemoattractants. Immunol. Res. 24, 87-95. Lindner, J.R., Kahn,M.L., Coughlin,S.R., Sambrano,G.R., Schauble,E., Bernstein,D., Foy,D., Hafezi-Moghadam,A., and Ley,K. (2000). Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J. Immunol. 165, 6504-6510. Lockwood, C.J., Paidas,M., Krikun,G., Koopman,L., Masch,R., Kuczynski,E., Kliman,H., Baergen,R.N., and Schatz,F. (2005). Inflammatory Cytokine and Thrombin Regulation of Interleukin-8 and Intercellular adhesion molecule-1 expression in First Trimester Human Decidua. J. Clin. Endocrinol. Metab. Luster, A.D. (1998). Chemokines--chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338, 436-445. Macfarlane, S.R., Seatter,M.J., Kanke,T., Hunter,G.D., and Plevin,R. (2001). Proteinase-activated receptors. Pharmacol. Rev. 53, 245-282. Matsushima, K., Morishita,K., Yoshimura,T., Lavu,S., Kobayashi,Y., Lew,W., Appella,E., Kung,H.F., Leonard,E.J., and Oppenheim,J.J. (1988). Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J. Exp. Med. 167, 1883-1893. McNamara, C.A., Sarembock,I.J., Gimple,L.W., Fenton,J.W., Coughlin,S.R., and Owens,G.K. (1993). Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J. Clin. Invest 91, 94-98. Milia, A.F., Salis,M.B., Stacca,T., Pinna,A., Madeddu,P., Trevisani,M., Geppetti,P., and Emanueli,C. (2002). Protease-activated receptor-2 stimulates angiogenesis and accelerates hemodynamic recovery in a mouse model of hindlimb ischemia. Circ. Res. 91, 346-352. Molino, M., Barnathan,E.S., Numerof,R., Clark,J., Dreyer,M., Cumashi,A., Hoxie,J.A., Schechter,N., Woolkalis,M., and Brass,L.F. (1997). Interactions of mast cell tryptase with thrombin receptors and PAR-2. J. Biol. Chem. 272, 4043-4049. Moriguchi, T., Kuroyanagi,N., Yamaguchi,K., Gotoh,Y., Irie,K., Kano,T., Shirakabe,K., Muro,Y., Shibuya,H., Matsumoto,K., Nishida,E., and Hagiwara,M. (1996). A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J. Biol. Chem. 271, 13675-13679. Mukaida, N. (2000). Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int. J. Hematol. 72, 391-398. Mukaida, N. (2003). Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am. J. Physiol Lung Cell Mol. Physiol 284, L566-L577. Mukaida, N., Harada,A., Yasumoto,K., and Matsushima,K. (1992). Properties of pro-inflammatory cell type-specific leukocyte chemotactic cytokines, interleukin 8 (IL-8) and monocyte chemotactic and activating factor (MCAF). Microbiol. Immunol. 36, 773-789. Muller,W .A. (2002a). Leukocyte-endothelial cell interactions in the inflammatory response. Lab Invest 82, 521-533. Nystedt, S., Emilsson,K., Larsson,A.K., Strombeck,B., and Sundelin,J. (1995a). Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur. J. Biochem. 232, 84-89. Nystedt, S., Larsson,A.K., Aberg,H., and Sundelin,J. (1995c). The mouse proteinase-activated receptor-2 cDNA and gene. Molecular cloning and functional expression. J. Biol. Chem. 270, 5950-5955. Ono, K. and Han,J. (2000b). The p38 signal transduction pathway: activation and function. Cell Signal. 12, 1-13. Ossovskaya,V.S. and Bunnett,N.W. (2004b). Protease-activated receptors: contribution to physiology and disease. Physiol Rev. 84, 579-621. Page, K., Strunk,V.S., and Hershenson,M.B. (2003a). Cockroach proteases increase IL-8 expression in human bronchial epithelial cells via activation of protease-activated receptor (PAR)-2 and extracellular-signal-regulated kinase. J. Allergy Clin. Immunol. 112, 1112-1118. Pargellis, C. and Regan,J. (2003). Inhibitors of p38 mitogen-activated protein kinase for the treatment of rheumatoid arthritis. Curr. Opin. Investig. Drugs 4, 566-571. Pizurki, L., Zhou,Z., Glynos,K., Roussos,C., and Papapetropoulos,A. (2003). Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production. Br. J. Pharmacol. 139, 329-336. Prichett, W., Hand,A., Sheilds,J., and Dunnington,D. (1995). Mechanism of action of bicyclic imidazoles defines a translational regulatory pathway for tumor necrosis factor alpha. J. Inflamm. 45, 97-105. Reunanen, N., Li,S.P., Ahonen,M., Foschi,M., Han,J., and Kahari,V.M. (2002). Activation of p38 alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J. Biol. Chem. 277, 32360-32368.
Ricciardolo,F.L., Steinhoff,M., Amadesi,S., Guerrini,R., Tognetto,M., Trevisani,M., Creminon,C., Bertrand,C., Bunnett,N.W., Fabbri,L.M., Salvadori,S., and Geppetti,P. (2000). Presence and bronchomotor activity of protease-activated receptor-2 in guinea pig airways. Am. J. Respir. Crit Care Med. 161, 1672-1680. Ridley, S.H., Sarsfield,S.J., Lee,J.C., Bigg,H.F., Cawston,T.E., Taylor,D.J., DeWitt,D.L., and Saklatvala,J. (1997). Actions of IL-1 are selectively controlled by p38 mitogen-activated protein kinase: regulation of prostaglandin H synthase-2, metalloproteinases, and IL-6 at different levels. J. Immunol. 158, 3165-3173. Roy, S.S., Saifeddine,M., Loutzenhiser,R., Triggle,C.R., and Hollenberg,M.D. (1998). Dual endothelium-dependent vascular activities of proteinase-activated receptor-2-activating peptides: evidence for receptor heterogeneity. Br. J. Pharmacol. 123, 1434-1440. Saifeddine, M., al-Ani,B., Cheng,C.H., Wang,L., and Hollenberg,M.D. (1996). Rat proteinase-activated receptor-2 (PAR-2): cDNA sequence and activity of receptor-derived peptides in gastric and vascular tissue. Br. J. Pharmacol. 118, 521-530. Saifeddine, M., Roy,S.S., Al-Ani,B., Triggle,C.R., and Hollenberg,M.D. (1998). Endothelium-dependent contractile actions of proteinase-activated receptor-2-activating peptides in human umbilical vein: release of a contracting factor via a novel receptor. Br. J. Pharmacol. 125, 1445-1454. Saklatvala, J. (2004). The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr. Opin. Pharmacol. 4, 372-377. Salituro, F.G., Germann,U.A., Wilson,K.P., Bemis,G.W., Fox,T., and Su,M.S. (1999). Inhibitors of p38 MAP kinase: therapeutic intervention in cytokine-mediated diseases. Curr. Med. Chem. 6, 807-823. Sano, Y ., Harada,J., Tashiro,S., Gotoh-Mandeville,R., Maekawa,T., and Ishii,S. (1999). ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. J. Biol. Chem. 274, 8949-8957. Schmitz, M.L., Bacher,S., and Kracht,M. (2001). I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem. Sci. 26, 186-190. Shapiro, L. and Dinarello,C.A. (1995). Osmotic regulation of cytokine synthesis in vitro. Proc. Natl. Acad. Sci. U. S. A 92, 12230-12234. Smart, S.J. and Casale,T.B. (1994). TNF-alpha-induced transendothelial neutrophil migration is IL-8 dependent. Am. J. Physiol 266, L238-L245. Smith, W.B., Gamble,J.R., Clark-Lewis,I., and Vadas,M.A. (1991). Interleukin-8 induces neutrophil transendothelial migration. Immunology 72, 65-72. Stein, B., Brady,H., Yang,M.X., Young,D.B., and Barbosa,M.S. (1996). Cloning and characterization of MEK6, a novel member of the mitogen-activated protein kinase kinase cascade. J. Biol. Chem. 271, 11427-11433. Steinberg, S.F. (2005). The cardiovascular actions of protease-activated receptors. Mol. Pharmacol. 67, 2-11. Sweeney, S.E. and Firestein,G.S. (2004). Rheumatoid arthritis: regulation of synovial inflammation. Int. J. Biochem. Cell Biol. 36, 372-378. Tibbles, L.A. and Woodgett,J.R. (1999). The stress-activated protein kinase pathways. Cell Mol. Life Sci. 55, 1230-1254. Ulbrich, H., Eriksson,E.E., and Lindbom,L. (2003). Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol. Sci. 24, 640-647. Utgaard, J.O., Jahnsen,F.L., Bakka,A., Brandtzaeg,P., and Haraldsen,G. (1998). Rapid secretion of prestored interleukin 8 from Weibel-Palade bodies of microvascular endothelial cells. J. Exp. Med. 188, 1751-1756. van Nieuw Amerongen,G.P., van,D.S., Vermeer,M.A., Collard,J.G., and van,H., V (2000a). Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ. Res. 87, 335-340. van Nieuw Amerongen,G.P., Vermeer,M.A., and van,H., V (2000b). Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler. Thromb. Vasc. Biol. 20, E127-E133. Van, D.J., Decock,B., Conings,R., Lenaerts,J.P., Opdenakker,G., and Billiau,A. (1989a). The chemotactic activity for granulocytes produced by virally infected fibroblasts is identical to monocyte-derived interleukin 8. Eur. J. Immunol. 19, 1189-1194. Van, D.J., Van,B.J., Conings,R., Decock,B., and Billiau,A. (1989b). Purification of granulocyte chemotactic peptide/interleukin-8 reveals N-terminal sequence heterogeneity similar to that of beta-thromboglobulin. Eur. J. Biochem. 181, 337-344. Vergnolle, N. (1999a). Proteinase-activated receptor-2-activating peptides induce leukocyte rolling, adhesion, and extravasation in vivo. J. Immunol. 163, 5064-5069. Vergnolle, N., Hollenberg,M.D., Sharkey,K.A., and Wallace,J.L. (1999b). Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. Br. J. Pharmacol. 127, 1083-1090. Vergnolle, N., Macnaughton,W.K., Al-Ani,B., Saifeddine,M., Wallace,J.L., and Hollenberg,M.D. (1998). Proteinase-activated receptor 2 (PAR2)-activating peptides: identification of a receptor distinct from PAR2 that regulates intestinal transport. Proc. Natl. Acad. Sci. U. S. A 95, 7766-7771. Vu, T.K., Hung,D.T., Wheaton,V.I., and Coughlin,S.R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057-1068. Whitmarsh, A.J., Woolnough,M.J., Moore,H.D., Hornby,D.P., and Barratt,C.L. (1996). Biological activity of recombinant human ZP3 produced in vitro: potential for a sperm function test. Mol. Hum. Reprod. 2, 911-919. Xu,W.F., Andersen,H., Whitmore,T.E., Presnell,S.R., Yee,D.P., Ching,A., Gilbert,T., Davie,E.W., and Foster,D.C. (1998). Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci. U. S. A 95, 6642-6646. Yang, C.Y., Huang,C.C., Chang,I.C., Lee,C.H., Tsai,J.T., and Ko,Y.C. (1993). Pulmonary function and respiratory symptoms of Portland cement workers in southern Taiwan. Gaoxiong. Yi. Xue. Ke. Xue. Za Zhi. 9, 186-192. Yoshimura, T., Matsushima,K., Tanaka,S., Robinson,E.A., Appella,E., Oppenheim,J.J., and Leonard,E.J. (1987). Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc. Natl. Acad. Sci. U. S. A 84, 9233-9237. Young, P., McDonnell,P., Dunnington,D., Hand,A., Laydon,J., and Lee,J. (1993). Pyridinyl imidazoles inhibit IL-1 and TNF production at the protein level. Agents Actions 39 Spec No, C67-C69.
|