(3.227.235.183) 您好!臺灣時間:2021/04/20 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪欣儀
研究生(外文):Hsin-Yi Hung
論文名稱:天門冬去子果實之甾體皂苷研究
論文名稱(外文):Studies on the Steroidal Saponins from the Deseeded Fruit of Asparagus densiflorus
指導教授:李水盛
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:168
中文關鍵詞:天門冬武竹甾體皂苷甾烷醇類皂苷螺甾烷醇類皂苷
外文關鍵詞:Asparagus densiflorusfurostanoid glycosidespirostanoid glycoside
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先前的研究顯示百合科植物蘆筍(Asparagus officinalis)的種子具有抗癌活性的甾體皂苷,因此我們想去探討同屬植物但尚無研究報告的常見庭園植物天門冬(A. densiflorus)是否具有相似的抗癌活性成分。
將去子之果實以水萃取,繼之以極性分割為乙酸乙酯層、丁醇層及水層。而丁醇層,經由離心式分配層析儀及Sephadex LH-20進行劃割得到富含甾體皂苷的部份,再以半製備高效液相層析管柱RP-18分離(MeOH-H2O, ACN-H2O)而得五個甾体皂苷,包括26-O-β-D-glucopyranosyl-22α-methoxy-(25S)-furostan-3β,26-diol 3-O-α-L-rhamopyranosyl-(1→4)-β-D-glucopyranoside (1), 26-O-β-D-glucopyranosyl-22α-methoxy-(25R)-furostan-3β,26-diol 3-O-α-L-rhamopyranosyl-(1→4)- β-D-glucopyranoside (2), 26-O-β-D-glucopyranosyl-22α-hydroxy-(25R)-furostan-3β,26-diol 3-O-[α-L-rhamnopyranosyl-(1→2)- α-L-rhamopyranosyl-(1→4)]- β-D-glucopyranoside} (3), (25R,S)-5β-spirost-5-en-3β-ol 3-O-α-L-rhamnopyranosyl-(1→4)- β-D-glucopyranoside (4), (25S)-5β-spirostan-3-ol 3-O -α-L-rhamnopyranosyl-(1→2)- α-L-rhamnopyranosyl-(1→4)- β-D-glucopyranoside (5) 這些成分之結構皆經光譜分析確認,其中化合物1、3為首次分離的之天然物。而化合物5具有抗乳癌細胞(MCF-7)活性,IC50為5.19 μg/ml。
Recent studies indicated that the seed of Asparagus officinalis (Liliaceae) contained cytotoxic steroidal glycosides. Hence, we wanted to explore whether a related and uninvestigated species, A. densiflorus, a common garden plant, contained similar bioactive constituents.
The water extract of the fresh fruits void of seeds was divided into fractions soluble in EtOAC, n-BuOH and H2O. The n-BuOH soluble part was further fractionated over centrifugal partition chromatography (CPC), and Sephadex LH-20 to give fractions rich in glycosides. Separation of these fractions via semipreparative RP-18 HPLC column (MeOH-H2O, ACN-H2O) led to the isolation of five glycosides. They are characterized as 26-O-β-D-glucopyranosyl-22α-methoxy-(25S)-furostan-3β,26-diol 3-O-α-L-rhamopyranosyl-(1→4)-β-D-glucopyranoside (1), 26-O-β-D-glucopyranosyl-22α-methoxy-(25R)-furostan-3β,26-diol 3-O-α-L-rhamopyranosyl-(1→4)- β-D-glucopyranoside (2), 26-O-β-D-glucopyranosyl-22α-hydroxy-(25R)-furostan-3β,26-diol 3-O-[α-L-rhamnopyranosyl-(1→2)- α-L-rhamopyranosyl-(1→4)]- β-D-glucopyranoside} (3), (25R,S)-5β-spirost-5-en-3β-ol 3-O-α-L-rhamnopyranosyl-(1→4)- β-D-glucopyranoside (4), (25S)-5β-spirostan-3-ol 3-O -α-L-rhamnopyranosyl-(1→2)- α-L-rhamnopyranosyl-(1→4)- β-D-glucopyranoside (5)Their structures were elucidated mainly by NMR spectral analysis. This study leads to the isolation and characterization of two new furostanoid glycosides(1, 3). In addition, compound 5 is demonstrated to possess cytotoxicity against breast cancer cell line (MCF-7) with IC50 value of 5.19 μg/ml。
中文摘要…………………………………………………………………………… I
英文摘要……………………...……………………………………..…………….. II
總目錄………………………….………………………………………………… III
表目錄 (List of Tables)……..….…………………………………………………. V
流程圖目錄 (List of scheme)….………………………………………………… VI
圖及附圖目錄 (List of Figures and Spectra Appendices)……………………… VII
辭彙 (Glossary)………………………………………………………………… XV

壹、 序論及研究目的…………………………………………………………. 1
1.1武竹植物之簡介……………………………………………………… 1
1.2天門冬植物成分之相關研究………………………………………… 2
1.3甾體皂苷的化學結構………………………………………………… 6
1.4偵測器的介紹及比較………………………………………………… 8
1.5 製備級HPLC的介紹及注意事項………………………………..... 11
1.6研究目的…………………………………………………………..… 13
貳、 研究結果與討論………………………………………………………… 15
2.1分離結果…………………………………………………………… 15
2.1.1丁醇層CPC分離結果………………………………………….. 15
2.1.2 CPC Fr.A 之Sephadex LH-20分離結果………………………. 16
2.1.3 Fr.AS-3之成分分離結果……………………………………….. 18
2.1.4 CPC Fr.B之Sephadex LH-20分離結果……………………… 23
2.1.5 Fr.BS-2之成分分離結果……………………………………… 24
2.1.6 Fr.BS-3之成分分離結果……………………………………… 25
2.1.7 Fr.AS-4之成分分離結果……………………………………… 26
2.2結構解析……………………………………………………………. 28
2.2.2 Furost-5-ene-3,22,26-triol類化合物1及化合物2之結構解析. 32
2.2.1 Furostane-3,22,26-triol類化合物3之結構解析……………… 28
2.2.3 Spirost-5-en-3-ol類化合物4之結構解析…………………….. 39
2.2.4 Spirostan-3-ol類化合物5之結構解析…………………………. 43
2.3皂苷元C-22位置立體結構探討…………………………………… 47
2.4甾體皂苷類抗癌活性探討………..………………………………… 49
參、 實驗部份…………………………………………………………………… 52
3.1儀器與材料…………………………………………………………. 52
3.1.1理化性質測定儀器…………………………………………… 52
3.1.2成分分析及分離之儀器及材料……………………………… 52
3.1.3 試劑與溶劑……………………………………………………. 52
3.2武竹果實部醣苷類之抽取與分離…………………………………. 53
3.2.1丁醇層之成分分離 …………………………………………… 55
3.2.2 CPC Fr. A之成分分離………………………………………… 55
3.2.3 Fr. AS-3之成分分離…………………………………………... 56
3.2.4 CPC Fr. B之成分分離………………………………………… 57
3.2.5 Fr. BS-2之成分分離………………………………………….. 57
3.2.6 Fr. BS-3之成分分離………………………………………….. 57
3.2.7 Fr. AS-4之成分分離………………………………………….. 58
3.3各成分之理化數據………………………………………………… 58
肆、參考文獻………………………………………………………………….. 60
附圖



表目錄 (List of Tables)
Table 1. 13C NMR chemical shifts of basic spirostanoid, furostanoid and
furospirostanoid skeletons….………………………………………….. 8
Table 2. Comparison of UV, RI and ELSD ………………………………….…… 10
Table 3. Analytical vs. Preparative HPLC: Difference in Goals and Characteristics...11
Table 4. 1H- and 13C-NMR spectral data of compound 1 (aglycon part) ……… 30
Table 5. 1H- and 13C-NMR spectral data of compound 1 (sugar part) ………… 31
Table 6. Comparison of 1H- and 13C-NMR spectral data of compound 1 and 2
(aglycon part) ………………………………………………………….. 32
Table 7. Analysis of C-25 configuration of compound 1 and 2………………... 33
Table 8. 1H- and 13C-NMR spectral data of compound 3 (aglycon part) ……….. 38
Table 9. 1H- and 13C-NMR spectral data of compound 3 (sugar part)…………... 39
Table 10. 1H- and 13C-NMR spectral data of compound 4 (aglycon part) …….. 41
Table 11. 1H- and 13C-NMR spectral data of compound 4 (sugar part) ……… 42
Table 12. 1H- and 13C-NMR spectral data of compound 5 (aglycon part) ……… 45
Table 13. 1H- and 13C-NMR spectral data of compound 5 (sugar part) ………….. 46
Table 14. SAR study of spirostanoid against PC-12 and HCT-116 cancer cell
lines…………………………………………………………………….. 49
Table 15. In vitro anti-hepotoma activity of crude extract………………......... 167
Table 16. Anti-breast cancer activity of constituents isolated from Fr. AS-4… 168







流程圖目錄 (List of scheme)
Scheme 1. Extraction and fractionation of the fruit of Asparagus densiflorus….. 53
Scheme 2. Separation of BuOH layer containing steroidal glycosides………….. 54























圖及附圖目錄 (List of Figures and Spectra Appendices)
Figure 1.蒸發光散射檢測器(Evaporative Light Scattering Detector)結構示意圖.. 9
Figure 2. Hypothetical separations as a function of sample weight……………. 12
Figure 3. 丁醇可溶物之CPC分離結果之矽膠TLC圖示…………………… 15
Figure 4. 丁醇可溶物Fr. A之DCCC分離結果之矽膠TLC圖示………….. 16
Figure 5. 丁醇可溶物Fr. A之Lobar Lichroprep. RP-8分離結果之矽膠TLC圖
示…………………………………………………………………….. 16
Figure 6. 丁醇可溶物Fr. A之Sephadex LH-20分離結果之矽膠TLC圖示…. 17
Figure 7. 高液相層析儀分析Fr. AS-3之層析圖 (動相:ACN-water)……….. 18
Figure 8. 高液相層析儀分析Fr. AS-3之層析圖 (動相:MeOH-water)…….. 19
Figure 9. 半製備級高液相層析儀分離示意圖………………………………... 20
Figure 10. 高液相層析儀分離Fr. AS-3之層析圖…..……………………….. 21
Figure 11. 丁醇可溶物Fr. B之Sephadex LH-20分離結果之矽膠TLC圖示… 23
Figure 12. 高液相層析儀分離Fr. BS-2之層析圖……………………………... 24
Figure 13. 高液相層析儀分離Fr. BS-3之層析圖…..…………………………. 25
Figure 14. 高液相層析儀分析Fr. AS-4之層析圖……………………………... 26
Figure 15. 高液相層析儀分離Fr. AS-4之層析圖…………………………….. 27
Figure 16. Key HMBC correlation of compound 1…………………………….. 29
Figure 17. Key HMBC correlation of compound 3................................................ 37
Figure 18. NOESY cross-peak of H-5 and Me-19….…………………………… 37
Figure 19. 13C NMR data of compound 4a (25R)……………………………….. 40
Figure 20. 13C NMR data of compound 4b (25S)………………………………. 40
Figure 21. sarsasapogenin及smilagenin化學降解圖………………………….. 47
Figure 22. spirostane skeleton生合成示意圖…………………………………... 48
Figure 23. 1H spectrum of compound 1 (CD3OD, 400MHz).…………………… 63
Figure 24. Expanded 1H spectrum of compound 1 (CD3OD, 400MHz)...…….… 64
Figure 25. 13C-NMR and DEPT-90, 135 spectra of compound 1 (CD3OD,
100MHz)……………………………………………………….… 65
Figure 26. Expanded 13C-NMR spectrum of compound 1 (CD3OD, 100MHz)…... 66
Figure 27. HMBC spectrum of compound 1….…………………………………. 67
Figure 28. Expanded HMBC spectrum (1) of compound 1 (δH 0.7~2.2 ppm,
δC 14~45 ppm)……………………………………...…………………. 68
Figure 29. Expanded HMBC spectrum (2) of compound 1 (δH 3.3~5.5 ppm,
δC 14~45 ppm)………………………………………………………… 69
Figure 30. Expanded HMBC spectrum (3) of compound 1 (δH 0.8~2.5 ppm,
δC 55~83 ppm)………………………………………………………… 70
Figure 31. Expanded HMBC spectrum (4) of compound 1 (δH 3.1~5.0 ppm,
δC 60~82 ppm)……………………………………………………….... 71
Figure 32. Expanded HMBC spectrum (5) of compound 1 (δH 1.0~3.8 ppm,
δC 100~145 ppm)……………………………………………………… 72
Figure 33. HMQC spectrum of compound 1….…………………………………. 73
Figure 34. Expanded HMQC spectrum (1) of compound 1 (δH 0.8~2.5 ppm,
δC 14~45 ppm)………………………...…………………………….… 74
Figure 35. Expanded HMQC spectrum (2) of compound 1 (δH 3.2~4.6 ppm,
δC 60~85 ppm)………………………………………………………... 75
Figure 36. COSY spectrum of compound 1………….………………………..… 76
Figure 37. Expanded COSY spectrum (1) of compound 1 (δH 0.8~2.5 ppm to
δH 0.8~2.5 ppm)……………………………………………….......…… 77
Figure 38. Expanded COSY spectrum (2) of compound 1 (δH 3.1~4.5 ppm to
δH 3.1~4.5 ppm)………………………………………………........….. 78
Figure 39. NOESY spectrum of compound 1……….…………………………. 79
Figure 40. Expanded NOESY spectrum (1) of compound 1 (δH 1.5~4.5 ppm to
δH 3.0~5.5 ppm)………………………………………………………. 80
Figure 41. Expanded NOESY spectrum (2) of compound 1 (δH 0.8~2.5 ppm to
δH 0.8~2.5 ppm)…………………………………………………..……. 81
Figure 42. 1H spectrum of compound 2 (CD3OD, 400MHz)…….……………….. 82
Figure 43. Expanded 1H spectrum of compound 2 (CD3OD, 400MHz)…….……… 83
Figure 44. 13C-NMR and DEPT-90, 135 spectra of compound 2 (CD3OD,
100MHz)……………………………………………………………… 84
Figure 45. Expanded 13C-NMR spectrum of compound 2 (CD3OD, 100MHz)….. 85
Figure 46. HMBC spectrum of compound 2…..……………………………….. 86
Figure 47. Expanded HMBC spectrum (1) of compound 2 (δH 0.7~2.5 ppm,
δC 14~45 ppm)……………………………………………………….. 87
Figure 48. Expanded HMBC spectrum (2) of compound 2 (δH 0.8~2.5 ppm,
δC 55~83 ppm)………………………………………………………… 88
Figure 49. Expanded HMBC spectrum (3) of compound 2 (δH 3.2~4.5 ppm,
δC 100~105 ppm)……………………………………………………… 89
Figure 50. Expanded HMBC spectrum (4) of compound 2 (δH 3.4~5.5 ppm,
δC 14~45 ppm)…………………………………………..…………… 90

Figure 51. Expanded HMBC spectrum (5) of compound 2 (δH 3.0~5.0 ppm,
δC 60~83 ppm)………………………………………………………. 91
Figure 52. HMQC spectrum of compound 2………….…………………………... 92
Figure 53. Expanded HMQC spectrum (1) of compound 2 (δH 0.8~2.5 ppm,
δC 14~45 ppm)………………………………………………………… 93
Figure 54. Expanded HMQC spectrum (2) of compound 2 (δH 3.0~4.5 ppm,
δC 45~83 ppm)……………………………………………………….... 94
Figure 55. COSY spectrum of compound 2………………………………….....… 95
Figure 56. Expanded COSY spectrum (1) of compound 2 (δH 0.8~2.5 ppm to
δH 0.8~2.5 ppm)……………………………………………………… 96
Figure 57. Expanded COSY spectrum (2) of compound 2 (δH 3.0~5.5 ppm to
δH 3.0~5.5 ppm)……………………………………………………… 97
Figure 58. Expanded COSY spectrum (3) of compound 2 (δH 1.2~2.6 ppm to
δH 3.2~5.5 ppm)……………………………………………………… 98
Figure 59. NOESY spectrum of compound 2……………………………………. 99
Figure 60. 1H spectrum of compound 3 (CD3OD, 400MHz)...………………… 100
Figure 61. Expanded 1H spectrum of compound 3 (CD3OD, 400MHz)........….. 101
Figure 62. 13C-NMR and DEPT-90, 135 spectra of compound 3 (CD3OD,
100MHz)……………………………………………………..……… 102
Figure 63. Expanded 13C-NMR spectrum (2) of compound 3 (CD3OD, 100MHz) ..103
Figure 64. HMBC spectrum of compound 3…………………………………….. 104
Figure 65. Expanded HMBC spectrum (1) of compound 3 (δH 3.0~5.5 ppm,
δC 60~82 ppm)........................................................................................ 105
Figure 66. Expanded HMBC spectrum (2) of compound 3 (δH 0.5~5.5 ppm,
δC 14~45 ppm)………………………………........................................ 106
Figure 67. Expanded HMBC spectrum (3) of compound 3 (δH 0.6~2.4 ppm,
δC 55~85 ppm)…………………………………………......…….……. 107
Figure 68. Expanded HMBC spectrum (4) of compound 3 (δH 3.3~4.4 ppm,
δC 14~45 ppm)…………………………………………......…….……. 108
Figure 69. Expanded HMBC spectrum (5) of compound 3 (δH 0.9~3.8 ppm,
δC 100~115 ppm)………………………………………......…….……. 109
Figure 70. HMQC spectrum of compound 3…………………………………….. 110

Figure 71. Expanded HMQC spectrum (1) of compound 3 (δH 0.8~2.2 ppm,
δC 14~45 ppm)…………………………………………...…………….. 111
Figure 72. Expanded HMQC spectrum(2) of compound 3 (δH 3.2~4.4 ppm,
δC 60~85 ppm)……………………………………………………….... 112
Figure 73. Expanded HMQC spectrum (3) of compound 3 (δH 4.2~5.4 ppm,
δC 100~105 ppm)…………………………………………………….... 113
Figure 74. COSY spectrum of compound 3……………………………………... 114
Figure 75. Expanded COSY spectrum (1) of compound 3 (δH 3.0~5.5 ppm to
δH 3.0~5.5 ppm)………………………………………………….….... 115
Figure 76. Expanded COSY spectrum (2) of compound 3 (δH 3.6~4.5 ppm to
δH 1.2~2.0 ppm)………………………………………………….….... 116
Figure 77. Expanded COSY (3) spectrum of compound 3 (δH 0.6~2.3 ppm to
δH 0.6~2.3 ppm)………………………………………………….….... 117
Figure 78. NOESY spectrum of compound 3….……………………...………… 118
Figure 79. 1H spectrum of compound 4 (CD3OD, 400MHz)...………………….. 119
Figure 80. Expanded 1H spectrum of compound 4 (CD3OD, 400MHz)…...……. 120
Figure 81. 13C-NMR and DEPT-90, 135 spectra of compound 4 (CD3OD,
100MHz)……………………………………………………………… 121
Figure 82. Expanded 13C-NMR spectrum of compound 4 (CD3OD, 100MHz)… 122
Figure 83. HMBC spectrum of compound 4…………………………………… 123
Figure 84. Expanded HMBC spectrum (1) of compound 4 (δH 0.8~2.5 ppm,
δC 14~45 ppm)………………………………………………………… 124
Figure 85. Expanded HMBC spectrum (2) of compound 4 (δH 0.8~2.5 ppm,
δC 55~83 ppm)………………………………………………………… 125
Figure 86. Expanded HMBC spectrum (3) of compound 4 (δH 3.3~55 ppm,
δC 14~55 ppm)……………………………...………………………… 126
Figure 87. Expanded HMBC spectrum (4) of compound 4 (δH 0.8~2.5 ppm,
δC 14~45 ppm)……………………………..………………...………. 127
Figure 88. Expanded HMBC spectrum (5) of compound 4 (δH 1.1~3.1 ppm,
δC 100~145 ppm)…………………………..………………………… 128
Figure 89. HMQC spectrum of compound 4………….………………….……… 129
Figure 90. Expanded HMQC spectrum (1) of compound 4 (δH 0.8~2.2 ppm,
δC 14~35 ppm)……………………………..………………………… 130
Figure 91. Expanded HMQC spectrum (2) of compound 4 (δH 0.8~2.5 ppm,
δC 35~65 ppm)……………………………..………………………… 131
Figure 92. Expanded HMQC spectrum (3) of compound 4 (δH 3.1~4.0 ppm,
δC 65~83 ppm)……………………………..………………………… 132
Figure 93. Expanded HMQC spectrum (4) of compound 4 (δH 4.4~54 ppm,
δC 14~45 ppm)……………………………..………………………… 133
Figure 94. COSY spectrum of compound 4……………………………...……… 134
Figure 95. Expanded COSY spectrum (1) of compound 4 (δH 0.8~2.5 ppm to
δH 0.8~2.5 ppm)……………………………………………...……… 135
Figure 96. Expanded COSY spectrum (2) of compound 4 (δH 3.2~5.5 ppm to
δH 1.0~2.6 ppm)………………………….……..…………………… 136
Figure 97. Expanded COSY spectrum (3) of compound 4 (δH 3.2~5.0 ppm to
δH 3.0~5.0 ppm)………………………………...…………………… 137
Figure 98. NOESY spectrum of compound 4…………………………………… 138
Figure 99. Expanded NOESY spectrum (1) of compound 4 (δH 0.8~2.5 ppm to
δH 0.8~2.5 ppm)………………………...…………………..………… 139
Figure 100. Expanded NOESY spectrum (2) of compound 4 (δH 3.3~5.5 ppm to
δH 1.2~2.5 ppm)…………………………...……………..………… 140
Figure 101. 1H spectrum of compound 5 (CD3OD, 400MHz)…...……..……….. 141
Figure 102. Expanded 1H spectrum of compound 5 (CD3OD, 400MHz)………. 142
Figure 103. 13C-NMR and DEPT-90, 135 spectra of compound 5 (CD3OD,
100MHz)…………………………………………………………… 143
Figure 104. Expanded 13C-NMR spectrum of compound 5 (CD3OD, 100MHz).. 144
Figure 105. HMBC spectrum of compound 5…………………………………… 145
Figure 106. Expanded HMBC spectrum (1) of compound 5 (δH 0.8~2.0 ppm,
δC 50~85 ppm)………………………………………………………. 146
Figure 107. Expanded HMBC spectrum (2) of compound 5 (δH 3.3~5.5 ppm,
δC 60~83 ppm)…………………………..…………………….…… 147
Figure 108. Expanded HMBC spectrum (3) of compound 5 (δH 1.0~3.5 ppm,
δC 100~115 ppm)…………………………………………………….. 148
Figure 109. Expanded HMBC spectrum (4) of compound 5 (δH 3.2~4.4 ppm,
δC 14~45 ppm)……………………………………………………….. 149
Figure 110. HMQC spectrum of compound 5………………………………….. 150
Figure 111. Expanded HMQC spectrum (1) of compound 5 (δH 0.8~2.0 ppm,
δC 14~45 ppm)……………………………………..………………… 151
Figure 112. Expanded HMQC spectrum (2) of compound 5 (δH 1.0~1.8 ppm,
δC 50~70 ppm)……………………………………………………… 152
Figure 113. Expanded HMQC spectrum (3) of compound 5 (δH 3.0~4.4 ppm,
δC 60~85 ppm)…………………………………………………..…… 153
Figure 114. COSY spectrum of compound 5……….…………………………… 154
Figure 115. Expanded COSY spectrum (1) of compound 5 (δH 0.8~2.2 ppm to
δH 0.8~2.2 ppm)……………………………………………………… 155
Figure 116. Expanded COSY spectrum (2) of compound 5 (δH 3.2~5.0 ppm to
δH 3.2~5.0 ppm)……………………………………………………… 156
Figure 117. NOESY spectrum of compound 5……….………………………… 157
Figure 118. Expanded NOESY spectrum (1) of compound 5 (δH 0.8~2.0 ppm to
δH 0.8~2.0 ppm)………………………………………………….… 158
Figure 119. Expanded NOESY spectrum (2) of compound 5 (δH 3.2~5.5 ppm to
δH 3.2~5.5 ppm)…………………………...……………………… 159
Figure 120. ESI Mass spectrum of compound 1…………………………...……. 160
Figure 121. ESI Mass spectrum of compound 2…………………………...……. 161
Figure 122. ESI Mass spectrum of compound 3…………………………...……. 162
Figure 123. ESI Mass spectrum of compound 4…………………………...……. 163
Figure 124. ESI Ms/Ms spectrum of compound 4…………………………….… 164
Figure 125. ESI Mass spectrum of compound 5………………………………. 165
Figure 126. ESI Ms/Ms spectrum of compound 5…………………………… 166
1. http://www.plantzafrica.com/plantab/asparagdens.htm (Kirstenbosch National Botanical Garden)
2. http://www.ces.ncsu.edu/depts/hort/consumer/poison/Asparde.htm (North Carolina State University)
3. Toshikazu S., Fumio I., Nobuaki F., Yumi K., Tatsuo A., Yuichi F., Nijsiri R., and Isamu M. Structure and Relative Stereochemistry of a New Polycylic Alkaloid, Asparagamine A, Showing Anti-oxytocin Activity, Isolated from Asparagus racemosus Chem. Pharm. Bull. 42(6) 1360-1362 (1994)
4. Peter M., Jozsef D., Gyula T., Adrian H., Hanspeter P., and Kurt B. (9Z)-Capsanthin-5,6-epoxide, a New Carotenoid from the Fruits of Asparagus falcatus J. Nat. Prod. 64, 1254-1255 (2001)
5. Oketch-Rabah H. A., Dossaji S. F., Brogger C. S., Karla F., Else L., Claus C., Carl E. O., Ming C.,Arsalan K., and Thor T. Antiprotozal Compounds from Asparagus africanus; J. Nat. Prod. 60, 1017-1022 (1997)
6. Zhou Z. L., Rita A., Francesco D. S., Antonio D., Oreste S., and Cosimo P. Oligofurostanosides from Asparagus cochinchinensis Planta medica 54, 344 (1988)
7. Asfaw D., Ernst H., Olaf K., Gunter M., and Dawit A. Steroidal Saponin from Asparagus africanus Phytochemistry 51, 1069-1075(1999)
8. Yu S., Onoomar P., Edward J. K., Chee-Kok C., Chi-Tang H., Mou-Tuan H., Stephen A. G., and Geoffrey A. C. Steroidal Saponin from Asparagus officinalis and Their Cytotoxic Activity Planta Medica 63, 258-262 (1997)
9. Sharma S. C., Sati O. P., and Chand R. Steroidal Saponin of Asparagus curillus Phtochemistry 21, 1711-1714 (1982)
10. Ke h., Xinsheng Y. Protodioscin(NSC-698 796): Its Spectrum of Cytotoxic Against Sixty Human Cancer Cell Lines in an Anticancer Drug Screen Panel Planta medica 68, 297-301 (2002)
11. Antonio G. G., Juan C. H., Franciso L., Juan I. P., Francisco E., Jose Q., and Jaime B. Steroidal Saponin from the Bark of Dracaena draco and Their Cytotoxic Activities J. Nat. Prod. 66, 793-798 (2003)
12. Yoshihiro M., Tadaaki S., Minpei K., Yutaka S., and Yoshio H.; Steroidal Saponin from the Bulb of Lilium candidum Phytochemistry 51, 567-573 (1999)
13. 吳立軍主編, 天然藥物化學 (第四版), 北京; 人民衛生出版社, 2003
14. Wall M. E., Eddy C. R., Mcclennen M. L., and Klumpp M. E. Anal. Chem. 24, 1377(1952)
15. Pawan K. A. Spectral Assignments and Reference Data Magn. Reson. Chem. 24, 990-993 (2004)
16. Tsuyoshi I., Hidetsugu T., Masafumi O., and Toshihiro N. Pregnane- and Furostane-Type Oligoglycosides from the Seeds of Allium tuberosum Chem. Pharm. Bull. 52, 142-145(2004)
17. Agrawal P.K., Jain D. C., Gupta R. K., and Thakur R. S. Carbon-13 NMR Spectroscopy of Steroidal Sapogenins and Steroidal Saponins Phytochemistry 24, 2479-2496(1985)
18. Masazumi M., Yukiyoshi T., Hitoshi M., Kenji M., Osamu T., Takao I., Kazuhiro O., Ryoji K., and kazup Y. Antiyeast Steroidal Saponins from Yucca schidigera (Mohave Yucca), a New Anti-Food-Deteriorating Agent J. Nat. Prod. 63, 332-338(2000)
19. Paul M Dewick; Medicinal Natural Product : A biosynthetic approach (2nd ed.), Great Britain: Wily pp237-241 (2001)
20. Silverstein, Robert M.; Spectrometric identification of organic compounds (6th ed.), United States : Wily p.225 (1997)
21. Snyder, Lloyd R.; Practical HPLC method development (2nd ed.), United State:Wiley (1997)
22. Tsuyoshi I., Hidetsugu T., Takehiko H., and Toshihiro N. Cytooxic Activity of Steroidal Glycosides from Solanum Plants Biol. Pham. Bull. 26, 1198-1201(2003)
23. Akihito Y., Yoshihiro M., and Yutaka S. Spirostanol Saponins from the rhizomes of Tacca chantrieri and Their Cytotoxic Activity Phytochem. 61, 73-78(2002)
24. Sheng-Min S., Min-Liang Z., Xiong-Wen Z., Ai-Na L., and Zhong-Liang C. Tuberoside M, A New Cytotoxic Spirostanol Saponin from the Seeds of Allium Tuberosum J. Asia Nat. Prod. Res. 4, 69-71(2002)
25. 徐任生主編, 天然產物化學 (第二版), 北京; 科學出版社, 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 第一部分:小果葉下珠和金新木薑子葉部成分之分離及利用高效液相層析-固相萃取-核磁共振之分析研究第二部分:皇后葵抑制甲型葡萄糖水解酶活性成分之研究第三部分:寬筋藤根莖部分之化學成分研究
2. 三黃瀉心湯、固醇類荷爾蒙及維生素E之毛細管電泳分析
3. 菲律賓楠抑制甲型葡萄糖水解酶之活性成分研究
4. 鹿角塗面複方與四種中草藥天門冬、白朮、白芷、白蘞萃取物之抗老化與美白有效性評估
5. 1.麥珠子莖部化學成分之研究2.降血糖民間藥WFT之藥效成分分析3.黃耆皂苷元之製備
6. 第一部分:以毛細管電泳分析赤楊屬植物及生物樣品中之oregonin成分第二部分:以UPLC-MS/MS定量在馬兜鈴及生物樣品中之aristolochicacidI及aristolochicacidII
7. 大葉楠類黃酮成分之研究
8. 高效液相層析-固相萃取-核磁共振技術之應用:一、 金新木薑子葉部生物鹼成分之研究二、 變葉新木薑子葉部黃酮類成分之研究
9. 衍自Pavinane架構之中樞神經藥物研發
10. 一、RetrojusticidinB在大鼠中的藥物動力學及代謝研究二、串聯式LC-SPE-NMR技術的應用1.分析及確認錫蘭葉下珠及葉下珠所含之木脂素成份2.TM-1在大鼠及豬中的藥物動力學及代謝研究
11. 第一部分天然活性成分Territrem、Viburolide及Incrustasterol類似物之製備;第二部分小花楠及昆欄樹化學成分之研究
12. 大仙茅葉部之化學成分研究
13. 第一部份 Dicentrine在蘭嶼迷你豬之代謝研究第二部份 臺灣赤楊葉部之抗發炎活性成分研究 (II)第三部份 臺灣山毛櫸化學成分之研究第四部分 樹參化學成分之研究
14. 第一部分:利用高效液相層析-活性篩選技術研究圓滑番荔枝抗乙醯膽鹼酯酶成分;第二部分:十四種樟科木薑子及新木薑子屬之黃酮類成分研究;第三部分:ALZ-1改善大鼠記憶之研究
15. 螯蟹花葉部之成分研究
 
系統版面圖檔 系統版面圖檔