跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 00:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何浩君
研究生(外文):Hao-Chun Ho
論文名稱:中風患者有無穿著鉸接式踝足矯具跨越障礙之動作分析
論文名稱(外文):Motion Analysis of Patients With Stroke During Obstacle Crossing With and Without Hinged Ankle-Foot Orthoses
指導教授:林光華林光華引用關係
指導教授(外文):Kwan-Hwa Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:67
中文關鍵詞:中風半側偏癱踝足矯具跨越障礙物
外文關鍵詞:StrokeHemiplegiaObstacleAnkle-foot orthosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目的:本研究目的在探討中風病患穿戴踝足矯具,對於跨越障礙時動作學參數及肌電訊號的影響,以助於瞭解跨越障礙之表現與動作控制。
方法:十一位能獨立行走十公尺的中風病患(平均年齡52.36歲) 參與跨越障礙物實驗。受試者接受量身訂做的鉸接式踝足矯具。實驗在有穿及無穿踝足矯具跨越4公分高的障礙物的兩種情形下進行。採用三度空間動作分析系統(Vicon motion analysis system; Oxford, UK)及肌電訊號擷取系統(Gould polygraph)收取患側腳先跨及患側腳後跨兩種動作。分析的動作學參數包括:跨越腳跨越時與障礙物之間的距離(obstacle clearance)、患側腳關節角度、跨越時的身體質量中心(center of mass)位移範圍、身體質量中心的位移速度、以及跨越時患側腳的肌肉共同收縮比 (co-contraction ratio) 。
結果:本研究結果中,中風病人在穿戴踝足矯具時跨越腳與障礙物之間的距離 (obstacle clearance)較無穿戴時的距離有顯著降低,同時表現在患側腳先跨(t(10)=2.320, p<0.05)及後跨(t(10)=3.313, p<0.01)兩種情形中。身體質量中心垂直方向的位移量,患側腳當支撐腳(stance)時穿戴踝足矯具較無穿戴時小(t(10)=2.295, p<0.05);後跨時穿戴踝足矯具亦較無穿戴時小(t(10)=2.859, p<0.05) 。而身體質量中心垂直方向的位移量,患側腳當支撐腳時穿戴踝足矯具較無穿戴時大(t(10)=4.236, p<0.01) 。在關節角度以及跨越時肌肉共同收縮比例上,不管前跨或後跨,在有穿與無穿踝足矯具之間並無顯著差異。
結論:中風病人在有無穿戴踝足矯具跨越障礙物時,於跨越障礙間距與身體質量中心垂直方向的位移量皆有顯著差異。由此結果推論,中風病患穿戴踝足矯具跨越障礙物,主要改善其跨越時身體上抬程度的需求,進而減少其跨越時能量的消耗。而當患側當支撐腳時,穿戴踝足矯具亦提供較高的穩定度。
Objective: The aims of this study were to analyze the kinematics effects of ankle-foot orthoses (AFO) and electromyographic (EMG) activities during obstacle crossing in subjects with stroke to understand the clearance and the movement control pattern.
Method: Eleven subjects with stroke (mean age: 52.36 y.o.) who were able to walk independently for 10 m were recruited in this study. They were instructed to perform 4-cm high obstacle crossing with and without hinged AFO. The Vicon motion analysis system (Oxford, UK) was used to obtain the kinematic data. The Gould polygraph was used to collect the surface EMG of bilateral lower extremities. The obstacle clearance, center of mass (COM) displacement, COM peak velocity, joint angles, and the EMG co-contraction ratio of the crossing limb were calculated.
Results: The obstacle clearance reduced significantly both in lead-limb (t(10)=2.320, p<0.05) and trail-limb (t(10)=3.313, p<0.01) of subjects during crossing with AFO. The Medial-Lateral COM displacement was significantly increased while affected limb in stance with AFO (t(10)=4.236, p<0.01). The vertical COM displacements reduced significantly both in affected trail-limb crossing (t(10)=2.859, p<0.05) and in stance (t(10)=2.295, p<0.05) with AFO. The hip, knee, and ankle joint angles and co-contraction ratio of the affected lead-limb and trail-limb were not significantly different between hemiplegic subjects with and without AFO during crossing. Conclusion: When hemiplegic subjects cross with AFO, the obstacle clearance and the COM displacement are different from those without AFO. The application of AFO on hemiplegic subjects results in the reduction of body elevation which may decrease the energy cost during obstacle crossing. Furthermore, the support from AFO may increase the stability of the affected limb in stance during unaffected lead-limb crossing.
摘要 4
Abstract 5
Chapter 1 Introduction 6
1.1 Background 6
1.2 Aims and Hypotheses 7
1.3 Operational definition 10
1.3.1 Obstacle 10
1.3.2 Lead limb and trail limb 11
1.3.3 Obstacle clearance 11
1.3.4 Crossing Cycle 12
1.3.4 Center of mass 12
1.3.5 Symmetry Index (SI) 13
1.3.6 Root mean square (RMS) of EMG amplitude 13
1.3.7 Co-contraction ratio 13
Chapter 2 Literature Review 14
2.1 Kinematics of obstacle crossing in healthy subjects 14
2.2 Strategies of obstacle crossing in healthy subjects 16
2.3 Kinematics responses of obstacle crossing in subjects with stroke 18
2.4 Effect of ankle-foot orthosis on gait and balance in patients with stroke 20
Chapter 3. Research Methods 22
3.1 Participants 22
3.2 Study design 22
3.3 Experimental equipment 22
3.3 Experimental protocol 24
3.3.1 Clinical assessment 24
3.3.2 Motion assessment 25
3.4 Data analysis 27
Chapter 4. Results 32
4.1 Participants 32
4.2 Crossing event 34
4.3 Obstacle clearance 37
4.3.1 Affected lead-limb 37
4.3.2 Affected trail-limb 37
4.4 Joint angles 38
4.4 COM displacement 41
4.4.1 Affected lead-limb 41
4.4.2 Affected trail-limb 41
4.4.3 Affected limb in stance 42
4.5 COM peak velocity 43
4.5.1 Affected lead-limb 44
4.5.2 Affected trail-limb 44
4.5.3 Affected limb in stance 44
4.6 EMG co-contraction ratio 46
4.6.1 Affected lead-limb 46
4.6.2 Affected trail-limb 46
Chapter 5 Discussion 50
5.1 Obstacle clearance 50
5.2 Joint angles 51
5.3 COM displacement 52
5.4 COM medial-lateral peak velocity 53
5.5 EMG co-contraction 53
5.4 Influences of crossing speed 54
5.5 Research limitations 55
5.6 Further research 56
5.7 Conclusion 56
References 58
Appendix 61
1.Carr JH. Neurological rehabilitation: optimizing motor performance. Oxford; Boston: Butterworth-Heinemann; 1998.
2.Stolze H, Klebe S, Zechlin C, Baecker C, Friege L, Deuschl G. Falls in frequent neurological diseases--prevalence, risk factors and aetiology. J Neurol. Jan 2004;251(1):79-84.
3.Forster A, Young J. Incidence and consequences of falls due to stroke: a systematic inquiry. Bmj. Jul 8 1995;311(6997):83-86.
4.Said CM, Goldie PA, Patla AE, Sparrow WA, Martin KE. Obstacle crossing in subjects with stroke. Arch Phys Med Rehabil. Sep 1999;80(9):1054-1059.
5.Chou LS, Draganich LF. Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping. J Biomech. Aug 1998;31(8):685-691.
6.Chou LS, Kaufman KR, Brey RH, Draganich LF. Motion of the whole body''s center of mass when stepping over obstacles of different heights. Gait Posture. Feb 2001;13(1):17-26.
7.Sparrow WA SA, Chow S. Characteristics of gait in stepping over obstacles. Human movement science. 1996;15:605-622.
8.Said CM, Goldie PA, Patla AE, Sparrow WA. Effect of stroke on step characteristics of obstacle crossing. Arch Phys Med Rehabil. Dec 2001;82(12):1712-1719.
9.Said CM, Goldie PA, Culham E, Sparrow WA, Patla AE, Morris ME. Control of lead and trail limbs during obstacle crossing following stroke. Phys Ther. May 2005;85(5):413-427.
10.Tranter RT, Slater R, Vaughan N. Barriers to mobility: physically-disabled and frail elderly people in their local outdoor environment. Int J Rehabil Res. 1991;14(4):303-312.
11.Patla AE, Rietdyk S. Visual control of limb trajectory over obstacles during locomotion: effect of obstacle height and width. Gait Posture. 1993;1:45-60.
12.Patla AE, Rietdyk S, Martin C, Prentice S. Locomotor Patterns of the Leading and the Trailing Limbs as Solid and Fragile Obstacles Are Stepped Over: Some Insights Into the Role of Vision During Locomotion. J Mot Behav. Mar 1996;28(1):35-47.
13.Chou LS, Kaufman KR, Hahn ME, Brey RH. Medio-lateral motion of the center of mass during obstacle crossing distinguishes elderly individuals with imbalance. Gait Posture. Dec 2003;18(3):125-133.
14.Winter DA. Biomechanics and motor control of human movement. 2nd ed. NY: John Wiley & Sons; 1990.
15.Dettman M, Linder M, Sepic S. Relationships among walking performance, postural stability, and functional assessments of the hemiplegic patient. Am J Phys Med. 1987;66:77-90.
16.Cram JR, Kasman GS, Holtz J. Introduction to surface electromyography. Gaithersburg, Md.: Aspen Publishers; 1998.
17.Hirschfeld H, Forssberg H. Phase-dependent modulations of anticipatory postural activity during human locomotion. J Neurophysiol. Jul 1991;66(1):12-19.
18.Hammond MC, Fitts SS, Kraft GH, Nutter PB, Trotter MJ, Robinson LM. Co-contraction in the hemiparetic forearm: quantitative EMG evaluation. Arch Phys Med Rehabil. May 1988;69(5):348-351.
19.Chou LS, Draganich LF, Song SM. Minimum energy trajectories of the swing ankle when stepping over obstacles of different heights. J Biomech. Feb 1997;30(2):115-120.
20.Patla AE, Prentice SD, Robinson C, Neufeld J. Visual control of locomotion: strategies for changing direction and for going over obstacles. J Exp Psychol Hum Percept Perform. Aug 1991;17(3):603-634.
21.Leung J, Moseley A. Impact of ankle-foot orthoses on gait and leg muscle activity in adults with hemiplegia. Physiotherapy. 2003;89(1):39-55.
22.Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB. Stepping over obstacles: gait patterns of healthy young and old adults. J Gerontol. Nov 1991;46(6):M196-203.
23.Laidler P. Stroke rehabilitation: structure and strategy. London: Chapman & Hall; 1994.
24.Corcoran PJ, Jebsen RH, Brengelmann GL, Simons BC. Effects of plastic and metal leg braces on speed and energy cost of hemiparetic ambulation. Arch Phys Med Rehabil. Feb 1970;51(2):69-77.
25.Tyson SF, Thornton HA. The effect of a hinged ankle foot orthosis on hemiplegic gait: objective measures and users'' opinions. Clin Rehabil. Feb 2001;15(1):53-58.
26.Burdett RG, Borello-France D, Blatchly C, Potter C. Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace. Phys Ther. Aug 1988;68(8):1197-1203.
27.Hesse S, Werner C, Matthias K, Stephen K, Berteanu M. Non-velocity-related effects of a rigid double-stopped ankle-foot orthosis on gait and lower limb muscle activity of hemiparetic subjects with an equinovarus deformity. Stroke. Sep 1999;30(9):1855-1861.
28.Mojica JAP, Nakamura R, Kobayashi T. Effect of ankle-foot orthoses on body sway and walking capacity of hemiparetic stroke patients. Tohoku Journal od Experimental. 1988;156(4):395-401.
29.Chen CL, Yeung KT, Wang CH, Chu HT, Yeh CY. Anterior ankle-foot orthosis effects on postural stability in hemiplegic patients. Arch Phys Med Rehabil. Dec 1999;80(12):1587-1592.
30.Brunnstrom S. Movement therapy in hamiplegia: A neurophysiological approach. NY: Harper & Row; 1970.
31.Berg K, Wood-Dauphinee S, Williams JI. The balance scale: Reliability assessment with elderly resident and patients with an acute stroke. Scand J Rehabil Med. 1995;27:27-36.
32.Folstein MF, Folstein SE, McHugh PR. "mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189-198.
33.Perotto AO. Anatomical guide for the electromyographer: the limbs and trunk. Springfield, Ill.: Charles C. Thomas; 1994.
34.Butler PB, Farmer SE, Major RE. Improvement in gait parameters following late intervention in traumatic brain injury: a long-term follow-up report of a single case. Clin Rehabil. Aug 1997;11(3):220-226.
35.Gok H, Kucukdeveci A, Altinkaynak H, Yavuzer G, Ergin S. Effects of ankle-foot orthoses on hemiparetic gait. Clin Rehabil. Mar 2003;17(2):137-139.
36.Orendurff MS, Segal AD, Klute GK, Berge JS, Rohr ES, Kadel NJ. The effect of walking speed on center of mass displacement. J Rehabil Res Dev. Nov-Dec 2004;41(6):829-834.
37.Krebs DE, Jette AM, Assmann SF. Moderate exercise improves gait stability in disabled elders. Arch Phys Med Rehabil. Dec 1998;79(12):1489-1495.
38.Kaya BK, Krebs DE, Riley PO. Dynamic stability in elders: momentum control in locomotor ADL. J Gerontol A Biol Sci Med Sci. Mar 1998;53(2):M126-134.
39.Hudson CC, Krebs DE. Frontal plane dynamic stability and coordination in subjects with cerebellar degeneration. Exp Brain Res. May 2000;132(1):103-113.
40.Shumway-Cook A, Woollacott MH. Motor control: theory and practical applications. Philadelphia: Lippincott Williams & Wilkins; 2001.
41.Lehmann JF, Condon SM, Price R, deLateur BJ. Gait abnormalities in hemiplegia: their correction by ankle-foot orthoses. Arch Phys Med Rehabil. Nov 1987;68(11):763-771.
42.Hesse S, Luecke D, Jahnke MT, Mauritz KH. Gait function in spastic hemiparetic patients walking barefoot, with firm shoes, and with ankle-foot orthosis. Int J Rehabil Res. Jun 1996;19(2):133-141.
43.Yamamoto S, Ebina M, Kubo S, et al. Quantification of the effect of dorsi-/plantarflexibility of ankle-foot orthoses on hemiplegic gait: A preliminary report. Journal of Prosthetics and Orthotics. 1993;3:88-94.
44.Lee KH, Johnston R. Bracing below the knee for hemiplegia: biomechanical analysis. Arch Phys Med Rehabil. Oct 1973;54(10):466-470.
45.Draganich LF, Kuo CE. The effects of walking speed on obstacle crossing in healthy young and healthy older adults. J Biomech. Jun 2004;37(6):889-896.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top