跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡詩力
研究生(外文):Shih-Li Tsai
論文名稱:高尿酸血症與蛋白尿相關性的探討
論文名稱(外文):Hyperuricemia and Proteinuria : A Population-based Prospective Study
指導教授:李龍騰李龍騰引用關係
指導教授(外文):Long-Teng Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:預防醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:157
中文關鍵詞:高尿酸血症蛋白尿
外文關鍵詞:HyperuricemiaProteinuria
相關次數:
  • 被引用被引用:0
  • 點閱點閱:993
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景
高尿酸血症有許多後遺症,如腎臟病、代謝症候群、高血壓、第二型糖尿病及心血管疾病等。其中,高血壓、第二型糖尿病與心血管疾病更是導致末期腎臟病的主因。由於蛋白尿是末期腎臟病早期的徵候,因此,釐清高尿酸血症與蛋白尿之間的關係,對於預防末期腎臟病而言,是相當重要的。不過,目前的文獻對於高尿酸血症與蛋白尿之間是否有因果關係,仍有爭議。本研究利用前瞻性的追蹤世代研究來推估蛋白尿的盛行率以及發生率,並釐清高尿酸血症與蛋白尿之間的因果關係。

方法
本世代追蹤研究乃針對基隆市民於民國九十年至九十三年間,計59,840位自願參與合家歡複合式篩檢的民眾,進行問卷調查、身體測量、血液生化數值檢查及尿液測試。其中,若首次即有蛋白尿的個案即逕行轉介,不再追蹤;而新發生蛋白尿的個案則會繼續追蹤後續狀況直到九十三年底。本研究中,蛋白尿為應變項,我們利用盛行率與發生率的比值來推估發生蛋白尿與嚴重蛋白尿(尿液試紙三價以上)所需的時間。並以時變性的帕松迴歸模式來推估各種變項對結果的影響。

結果
本研究所得之蛋白尿盛行率男性為11.8%,女性為12.3%,並且隨年齡增長而升高。再以盛行率與發生率的比值來推估發生蛋白尿所需的時間為3.9年(男3.5年、女4.4年);再推估發生嚴重蛋白尿所需的時間為3.4年(男3.0年、女3.3年)。嚴重蛋白尿的一年、兩年、三年的累積發生率為0.4%、1.4%、3.0%;中度蛋白尿則是0.4%、1.4%、3.0%;輕度蛋白尿則是2.1%, 9.4%, 與15.6%。
本研究同時發現:在多變項分析中,若是血中尿酸值高過9 mg/dL時,與正常尿酸值者相比較:由正常尿液測試到發生輕度蛋白尿的相對危險性為1.43倍(95%信賴區間為1.03-1.98);由正常、輕度或中度蛋白尿進展到嚴重蛋白尿的相對危險性為2.41倍(95%信賴區間為1.46-4.00);由中度蛋白尿進展到嚴重蛋白尿的相對危險性為4.58倍(95%信賴區間為2.47-8.47);由輕度或中度蛋白尿進展到嚴重蛋白尿的相對危險性為4.02倍(95%信賴區間為2.32-6.95)。另由回復的角度來看,由輕度蛋白尿回復至正常的尿液測試的相對危險性為0.87倍(95%信賴區間為0.79- 0.96),呈現有意義的負相關。中等程度的高尿酸血症(男性:7-9 mg/dL, 女性:6-9 mg/dL),與正常尿酸值者相比較:由中度蛋白尿進展到嚴重蛋白尿的相對危險性為2.78倍(95%信賴區間為1.69-4.56);由輕度或中度蛋白尿進展到嚴重蛋白尿的相對危險性為2.42倍(95%信賴區間為1. 59-3.67)。與正常範圍的尿酸值比較,不論是尿酸值高過9 mg/dL,或是中等程度的高尿酸血症(男性:7-9 mg/dL, 女性:6-9 mg/dL),都使得蛋白尿較不易回復正常。
若以腎小球過濾速率估算值來看高尿酸血症的影響時,在多變項分析中,與正常尿酸值者相比較,血中尿酸值高過9 mg/dL與中等程度的高尿酸血症(男性:7-9 mg/dL, 女性:6-9 mg/dL),各別有1.55倍(95%信賴區間為1.18-2.04)與1.32倍(95%信賴區間為1.14-2.51)的相對危險性會發生腎小球過濾速率估算值異常。另由回復的角度來看,與正常尿酸值者相比較,尿酸值高過9 mg/dL與中等程度的高尿酸血症(男性:7-9 mg/dL, 女性:6-9 mg/dL),腎小球過濾速率估算值異常回復至正常的相對危險性分別為0.63倍(95%信賴區間為0.53- 0.76)與0.79倍(95%信賴區間為0.71- 0.88),呈現有意義的負相關。若是以血清肌酸酐值的異常來觀察時,也有類似的發現。
當我們以時間應變模式來探討時,多變項分析可以發現類似的結果:尿酸值愈高者愈容易由正常發生重度蛋白尿,也愈不易回復正常;但在中度變重度或輕度變重度蛋白尿者,尿酸血症則是不顯著影響的變項。但是,一旦進展到了重度蛋白尿,回復與否便和血清尿酸值無關了。另以時間應變模式來看血清肌酸酐值以及腎小球過濾速率估算值與高尿酸血症之間的相關時,高尿酸血症是與腎功能減退的有意義的因子,同時也使得減損的腎功能較不易回復。

結論
本研究藉由蛋白尿的測量、血清肌酸酐值以及腎小球過濾速率估算值的探討,證實了血清尿酸值與腎功能不全的因果關係。這樣的研究結果告訴我們,控制血中尿酸值對預防腎功能減退與腎臟傷害是重要且必要的。
Background
The sequale of hyperuricemia involve renal disease, metabolic syndrome (MS), hypertension, Type II diabetes, and cardiovascular disease, while the latter three were well documented as the major causes of end stage renal disease (ESRD). Owing to this, the linkage between hyperuricemia and early sign of ESRD like proteinuria is of paramount importance to prevent ESRD. However, the causal relationship between hyperuricemia and proteinuria still remains controversial. This thesis aimed to use a longitudinal cohort to (1) estimate prevalence and incidence rate or cumulative incidence of proteinuria; and to (2) elucidate the causal relationship between hyperuricemia and proteinuria, serum creatinine or glomerular filtration rate after adjusting other significant correlates.

Materials and Methods
A total of 59,840 participants in the prospective cohort attending the Keelung Community-based Integrated Screening (KCIS) program were included. Subjects with proteinuria, abnormal serum creatinine or abnormal glomerular filtration rate at the entry of the KCIS program were excluded. Newly diagnosed proteinuria were ascertained in successive years of screening regime until the end of 2004 and treated as dependent variables. The longitudinal data on anthropometry measures, blood pressure measures, biochemical markers, dipstick spot urine analyses, and lifestyle factors were also collected at each visit. The concept of P/I ratio was applied to approximate the mean duration of proteinuria/severe proteinuria. Time-dependent Poisson regression models were conducted to estimate the effect of covariates (time-varying) on developing of event of interests.

Results
The prevalence rates of proteinuria was 11.8% and 12.3% for male and female (p<.0001), respectively. Both increased with advancing age. By the application of the concept of P/I ratio, the average duration of staying in proteinuria was 3.9 years (P: 12.1%; I: 3.1%) (3.5 years for male and 4.4 years for female). The corresponding figures for severe proteinuria were 3.4 years (P: 3.1%; I: 0.8% ) (3.0 years for male and 3.3 years for female). One-year, two-year, and three-year cumulative rates were 0.4%, 1.4%, and 3.0% for severe proteinuria. The corresponding figures 0.9%, 3.5%, and 7.6% for moderate proteinuria and 2.1%, 9.4%, and 15.6% for mild proteinuria.
High level of serum uric acid (SUA>9) was associated with progression from normal to mild proteinuria (RR=1.43, 95% CI: 1.03-1.98), from normal, mild, and moderate to severe proteinuria (RR=2.41, 95% CI: 1.46-4.00), from moderate to severe proteinuria (RR=4.58, 95% CI: 2.47-8.47), and from mild and moderate to severe proteinuria (RR=4.02, 2.32-6.95). It was also associated with the regression from mild to normal proteinuria (RR=0.87, 95% CI: 0.79-0.96) compared to those with normal SUA after controlling for other significant clinical correlates. Moderate level of SUA (7-9 for male, and 6-9 for female) was a risk factor of progression from moderate to severe proteinuria (RR=2.78, 95% CI: 1.69-4.56), and from mild and moderate to severe proteinuria (RR=2.42, 1.59-3.67). The moderate level of SUA also played a role of a hindering factor from regression (RR=0.90, 95% CI: 0.81-0.99).
When considering the disease progress of abnormal GFR, high level of serum uric acid (RR=1.55, 95% CI: 1.18-2.04) and moderate level (RR=1.32, 95% CI: 1.14-1.51) were significant risk factors compared to those with normal SUA after controlling for other significant clinical correlates. Both were significant preventive factors for regression with relative risks of 0.63 (95% CI: 0.53-0.76) and 0.79 (95% CI: 0.71-0.88) for high and moderate levels of SUA, respectively. The similar results were observed when considering the abnormal level of S-Cr.
Regarding the time-dependent models, serum uric acid was still positively associated with progression of proteinuria and inversely associated with regression of proteinuria. After controlling for other significant risk factors, similar findings were noted for the progression to severe proteinuria. For progression from mild to severe proteinuria or from moderate to severe, SUA was not important. Again, once the progression to severe proteinuria, the change of SUA was not associated with the regression of severe proteinuria. By using GFR and S-Cr, the results of time-dependent Poisson regression model revealed SUA was positively associated with decreased kidney function and increasingly associated with regression.

Conclusion
The causal relationship between serum uric acid and kidney dysfunction measured by proteinuria, elevated serum creatinine and decreased estimated GFR was substantiated in this study. These findings imply lifestyle modification of serum uric acid for the prevention of kidney dysfunction or decreased kidney function is imperative.
Contents
English Abstract 8
Chinese Abstract 12
1 INTRODUCTION 17
1.1 Background 17
1.2 Objectives 18
2 LITERATURE REVIEW 19
2.1. Burden of End Stage Renal Disease (ESRD) 19
2.2 Early Indicators for ESRD 20
2.2.1 Elevated Serum Creatinine (S-Cr) 20
2.2.2 Glomerular Filtration Rate (GFR) 21
2.2.3 Proteinuria 23
2.3 Hyperuricemia and Renal Damage 30
2.4 Summary and Hypotheses Proposed 32
3 MATERIALS AND METHODS 34
3.1 Study Subjects 34
3.2 Study Design 34
3.2.1 Study Cohort 34
3.2.2 Repeated Outcome Measurement 35
3.3 Data Collection 36
3.3.1 Questionnaire 36
3.3.2 Anthropometric Measures 37
3.3.3 Blood Pressure Measures 37
3.3.4 Biochemical Markers 38
3.3.5 Dipstick Spot Urine Analyses 39
3.3.6 Lifestyle factors 40
3.4 Statistical Methods 41
4 RESULTS 43
4.1 Descriptive Results 43
4.1.1 Baseline Characteristics 43
4.1.2 Prevalence and Incidence Rate of Proteinuria 44
4.1.3 Prevalence/Incidence Ratio of Proteinuria 44
4.1.4 Prevalence of Hyperuricemia 45
4.2 Baseline Characteristics Between Proteinuria and Severe Proteinuria 45
4.3 Cumulative Incidence Rate of Proteinuria and Severe Proteinuria 46
4.4 Factors Associated with Multi-step Progression of Proteinuria 47
4.4.1 Progression Normal to Mild Proteinuria 47
4.4.2 Regression from Mild Proteinuria to Normal 49
4.4.3 Progression from Normal, Mild, or Moderate to Severe Proteinuria 49
4.4.4 Down-staging of Severe Proteinuria 50
4.5 Factors Associated with GFR 52
4.5.1 Progression to Abnormal GFR 52
4.5.2 Regression to Normal 53
4.6 Factors Associated with Abnormal Serum Creatinine (S-Cr) 54
4.6.1 Progression to Abnormal S-Cr 54
4.6.2 Regression to Normal 55
4.7 Time-dependent Effect 56
5 DISCUSSION 57
5.1 Causal Relationship Between SUA and Proteinuria 57
5.2 Projection of Natural History of Proteinuria 57
5.3 Early Indicators for Renal Dysfunction 59
5.4 Comparison with Previous Study 60
5.5 Methodological Consideration 60


References 62

Figures 65
Tables 69
1997. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet 349, 1857-1863.

2002. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39, S1-266.

Appel,G.B., Radhakrishnan,J., Avram,M.M., DeFronzo,R.A., Escobar-Jimenez,F., Campos,M.M., Burgess,E., Hille,D.A., Dickson,T.Z., Shahinfar,S. & Brenner,B.M. 2003. Analysis of metabolic parameters as predictors of risk in the RENAAL study. Diabetes Care 26, 1402-1407.

Carel,R.S., Silverberg,D.S., Kaminsky,R. & Aviram,A. 1987. Routine urinalysis (dipstick) findings in mass screening of healthy adults. Clin. Chem. 33, 2106-2108.

Carroll,M.F. & Temte,J.L. 2000. Proteinuria in adults: a diagnostic approach. Am. Fam. Physician 62, 1333-1340.

Davidson,M.B. & Smiley,J.F. 1999. Relationship between dipstick positive proteinuria and albumin:creatinine ratios. J. Diabetes Complications 13, 52-55.

Domrongkitchaiporn,S., Sritara,P., Kitiyakara,C., Stitchantrakul,W., Krittaphol,V., Lolekha,P., Cheepudomwit,S. & Yipintsoi,T. 2005. Risk factors for development of decreased kidney function in a southeast Asian population: a 12-year cohort study. J. Am. Soc. Nephrol. 16, 791-799.

Ginsberg,J.M., Chang,B.S., Matarese,R.A. & Garella,S. 1983. Use of single voided urine samples to estimate quantitative proteinuria. N. Engl. J. Med. 309, 1543-1546.
Hunsicker,L.G., Adler,S., Caggiula,A., England,B.K.,

Greene,T., Kusek,J.W., Rogers,N.L. & Teschan,P.E. 1997. Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. Kidney Int. 51, 1908-1919.

Iseki,K., Iseki,C., Ikemiya,Y. & Fukiyama,K. 1996. Risk of developing end-stage renal disease in a cohort of mass screening. Kidney Int. 49, 800-805.

Iseki,K., Oshiro,S., Tozawa,M., Iseki,C., Ikemiya,Y. & Takishita,S. 2001. Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens. Res. 24, 691-697.

Kang,D.H., Nakagawa,T., Feng,L., Watanabe,S., Han,L., Mazzali,M., Truong,L., Harris,R. & Johnson,R.J. 2002. A role for uric acid in the progression of renal disease. J. Am. Soc. Nephrol. 13, 2888-2897.

Kannel,W.B., Stampfer,M.J., Castelli,W.P. & Verter,J. 1984. The prognostic significance of proteinuria: the Framingham study. Am. Heart J. 108, 1347-1352.

Keane,W.F. & Eknoyan,G. 1999a. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am. J. Kidney Dis. 33, 1004-1010.

Keane,W.F. & Eknoyan,G. 1999b. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am. J. Kidney Dis. 33, 1004-1010.

Klahr,S., Levey,A.S., Beck,G.J., Caggiula,A.W., Hunsicker,L., Kusek,J.W. & Striker,G. 1994. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl. J. Med. 330, 877-884.

Larson,T.S. 1994. Evaluation of proteinuria. Mayo Clin. Proc. 69, 1154-1158.

Leoncini,G., Viazzi,F., Parodi,D., Vettoretti,S., Ratto,E., Ravera,M., Tomolillo,C., Del Sette,M., Bezante,G.P., Deferrari,G. & Pontremoli,R. 2003. Mild renal dysfunction and subclinical cardiovascular damage in primary hypertension. Hypertension 42, 14-18.

Levey,A.S., Bosch,J.P., Lewis,J.B., Greene,T., Rogers,N. & Roth,D. 1999. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 130, 461-470.

Miettinen,H., Haffner,S.M., Lehto,S., Ronnemaa,T., Pyorala,K. & Laakso,M. 1996. Proteinuria predicts stroke and other atherosclerotic vascular disease events in nondiabetic and non-insulin-dependent diabetic subjects. Stroke 27, 2033-2039.

Morales,J.V., Weber,R., Wagner,M.B. & Barros,E.J. 2004. Is morning urinary protein/creatinine ratio a reliable estimator of 24-hour proteinuria in patients with glomerulonephritis and different levels of renal function? J. Nephrol. 17, 666-672.

Myllymaki,J., Honkanen,T., Syrjanen,J., Helin,H., Rantala,I., Pasternack,A. & Mustonen,J. 2005. Uric acid correlates with the severity of histopathological parameters in IgA nephropathy. Nephrol. Dial. Transplant. 20, 89-95.

Peele,J.D., Jr., Gadsden,R.H. & Crews,R. 1977. Semi-automated vs. visual reading of urinalysis dipsticks. Clin. Chem. 23, 2242-2246.

Pegoraro,A., Singh,A., Bakir,A.A., Arruda,J.A. & Dunea,G. 1997. Simplified screening for microalbuminuria. Ann. Intern. Med. 127, 817-819.

Perna,A., Ruggenenti,P., Testa,A., Spoto,B., Benini,R., Misefari,V., Remuzzi,G. & Zoccali,C. 2000. ACE genotype and ACE inhibitors induced renoprotection in chronic proteinuric nephropathies1. Kidney Int. 57, 274-281.

Sanchez-Lozada,L.G., Tapia,E., Avila-Casado,C., Soto,V., Franco,M., Santamaria,J., Nakagawa,T., Rodriguez-Iturbe,B., Johnson,R.J. & Herrera-Acosta,J. 2002. Mild hyperuricemia induces glomerular hypertension in normal rats. Am. J. Physiol Renal Physiol 283, F1105-F1110.

Syrjanen,J., Mustonen,J. & Pasternack,A. 2000. Hypertriglyceridaemia and hyperuricaemia are risk factors for progression of IgA nephropathy. Nephrol. Dial. Transplant. 15, 34-42.
Tomita,M., Mizuno,S., Yamanaka,H., Hosoda,Y., Sakuma,K., Matuoka,Y., Odaka,M., Yamaguchi,M., Yosida,H., Morisawa,H. & Murayama,T. 2000. Does hyperuricemia affect mortality? A prospective cohort study of Japanese male workers. J. Epidemiol. 10, 403-409.

Torres,R.J., Martinez,M.A., Sancho,T., Moreno,A., Cabrera,R., Aguirre,A., Torre,A., Nevado,A. & Puig,J.G. 2000. Serum uric acid levels and microalbuminuria in mild hypertensive patients. Adv. Exp. Med. Biol. 486, 135-137.

Xin,G., Wang,M., Jiao,L.L., Xu,G.B. & Wang,H.Y. 2004. Protein-to-creatinine ratio in spot urine samples as a predictor of quantitation of proteinuria. Clin. Chim. Acta 350, 35-39.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文