(3.238.7.202) 您好!臺灣時間:2021/03/01 22:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳昌晏
研究生(外文):Chang-Yen Wu
論文名稱:以紫外線/氧化鋅程序分別處理含甲酚及EDTA水溶液反應行為之研究
論文名稱(外文):Treatment of o-Cresol and EDTA in Aqueous Solution by UV/ZnO Process
指導教授:顧洋顧洋引用關係
指導教授(外文):Young Ku
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:159
中文關鍵詞:甲酚EDTA氧化鋅光催化
外文關鍵詞:o-CresolEDTAZinc oxidePhotocatalysis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:193
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用紫外線/氧化鋅程序分別處理含甲酚及EDTA水溶液,探討紫外線光強度、氧化鋅添加量、反應物初始濃度、溶液pH值、溶氧量等實驗因子對反應物去除率及礦化率之影響。以紫外線/氧化鋅程序光分解含甲酚及EDTA水溶液時,由反應動力實驗結果顯示,隨著溶液pH值降低、光強度、氧化鋅添加量及溶氧量的提高,皆使得反應物去除速率加快。在反應動力學的探討方面,本研究以雙位置Langmuir-Hinshewood動力模式建立一個新的光反應設計方程式,並利用此設計方程式模擬出反應物在不同操作下之光催化分解行為。在無照光條件下,氧化鋅於甲酚水溶液中並沒有明顯的溶出情形;在EDTA存在時水溶液中氧化鋅會與EDTA產生螯合反應進而促進鋅離子的析出。在照射紫外光條件下,氧化鋅於甲酚或EDTA水溶液中,隨著溶液pH值的增加,鋅離子生成量有明顯的下降情形產生,當溶液pH值>10的時候,氧化鋅已經完全沒有光溶出現象。
The decomposition of o-cresol and EDTA in aqueous solution by UV/ZnO process were studied. The experiments were carried out under UV light intensities, ZnO dosages, initial reactant concentration, various solution pH values, dissolved oxygen levels, and other operating condition to investigate the removal and the mineralize efficiencies of reactant.
Photooxidation of o-cresol and EDTA in aqueous solution by UV/ZnO process was increased with increasing UV light intensities, ZnO dosages, and dissolved oxygen levels, and decreased with increasing solution pH. In order to model the removal of reactants by UV/ZnO process at various operation conditions, a design equation was developed by the modified Langmuir-Hinshewood model. ZnO was not dissolved obviously in the o-cresol solution without UV irradiation, but the generation of the zinc ion was promoted with the presence of EDTA due to the chelate formation between ZnO and EDTA. Under the UV irradiation, the dissolved zinc ion was decreased with increasing solution pH in both o-cresol and EDTA solutions.
目錄
中文摘要............................................................................………………I
英文摘要.................................................................….......…..………….II
致謝............................................................….......…...........……………III
目錄............................................................….......…...........……………IV
圖表索引.................................................................……...…………….VII
符號索引.................................................................……………………XII
第一章 緒論...................................................................…...……………1
第二章 理論基礎與文獻回顧................................................…...……...3
2.1 紫外線/氧化鋅程序之反應理論...........................….…........…3
2.1.1 光觸媒原理………......................................….....….....….3
2.1.2 表面吸附現象…………………….……………..........…..8
2.1.3 紫外線/氧化鋅程序之反應原理及機制……........……..10
2.2 紫外線/氧化鋅反應程序之影響因素.................……......…...14
2.2.1 紫外線光強度…………………….........……...…….......14
2.2.2 光觸媒添加量……………............….........….........…….15
2.2.3 反應初始濃度……...........................……………............16
2.2.4 溶液pH值............……...................…….........…………17
2.2.5 溶氧量.........................………..........….…………...........19
2.2.6 離子效應.....................………..........….…………...........20
第三章 實驗程序與設備.....……......................................…….............21
3.1 實驗儀器..................…...........…........................……..............21
3.2 實驗藥品…….......................................................……………22
3.3 實驗裝置……...............................................…………………23
3.4 實驗步驟.....................................................…………..............27
3.5 實驗架構……........................................................…………...30
3.6 分析測定方法.....................................................…………......34
第四章 實驗結果與討論....................................................……………43
4.1 實驗目的..........................................................……………….43
4.2 背景實驗..........................................................……………….44
4.2.1 氧化鋅之定性分析......................................…………….44
4.2.2 穩定性實驗..………………...................………………..53
4.2.3 光穩定性實驗…….……………....……..................……53
4.2.4 氧化鋅吸附污染物實驗..............................….…………54
4.3 以紫外線/氧化鋅程序處理含甲酚水溶液…………………..59
4.3.1 紫外線光強度……………………...............……………59
4.3.2 光觸媒添加量…………….......................………………63
4.3.3 反應物初始濃度……....................…………..........….....67
4.3.4 溶液pH值............……..........……………......................69
4.3.5 溶氧量.........................…………………....................…..76
4.3.6 鋅離子溶出.................…………………....................…..80
4.3.7 動力模式建立..........................…………….....…………87
4.4以紫外線/氧化鋅程序處理含EDTA水溶液…………………98
4.4.1紫外線光強度……………………...........………………..98
4.4.2反應物初始濃度.......................................…..……..……102
4.4.3溶液pH值…….......................................…...………….104
4.4.4溶氧量………………..…….……………………...........110
4.4.5 鋅離子溶出.................…………………..................…..114
4.4.6動力模式建立......……........................…………………121
第五章 結論與建議..............................................…...........………….128
參考文獻............................................................................……………130
附錄...............................................................................….……………135
作者簡介...............................................................…........…………….159
參考文獻
于仰聖,以滲透膜法處理螯合重金屬廢水之研究,82學年碩士論文,國立台灣工業技術學院化學工程研究所(1993)
莊英良,以紫外線/二氧化鈦程序分別處理含六價鉻及亞素靈水溶液反應行為之研究,85學年碩士論文,國立台灣工業技術學院化學工程研究所(1996)
李崑池,以離子交換程序處理含酚類水溶液反應行為之研究,85學年博士論文,國立台灣工業技術學院化學工程研究所(1996)
江立偉,以紫外線/光觸媒程序處理空氣中苯、甲苯及二甲苯氣體之反應行為,88學年碩士論文,國立台灣科技大學化學工程研究所(1999)
Al-Sayyed, G., D`Oliveira, J. and Pichat, P., “Semiconductor-sensitized photodegradation of 4-chlorophenol in water,” J. Photochem. Photobio. A: Chem., Vol.58, pp.99-105 (1991).
Akyol, A., Yatmaz, H. C. and Bayramoglu, M., “Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions,” Appl. Catal. B: Environ., Vol.54, pp.19-24 (2004).
Bard, A. J. and Wrighton M. S., “Thermodynamic potential for the anodic dissolution of n-type semiconductors,” J. Electrochem. Soc., Vol.124, pp.1706-1710 (1977).
Beltran, F. J., Encinar, J. M. and Garcia-Araya, J. F., “Ozonation of o-cresol in aqueous solutions,” Wat. Res., Vol.24, pp.1309-1316 (1990).

Charkrabarti, S. and Dutta, B. K., “Photocatalytic degradation of model dyes in wastewater using ZnO as semiconductor catalyst,” J. Hazard. Mater., Vol.B112, pp.269-278 (2004).
Chen, C., Veregin, R. P., Harbour, J. R., Hair, M. L., Issler, S. L. and Tromp, J., “Photochemistry of ZnO in heptane : detection by oxygen uptake and spin trapping,” J. Phys. Chem., Vol.93, pp.2607-2613 (1989).
Daneshvar, N., Salari, D. and Khataee, A. R., “Photocatalytic degradation of azo dye Acid Red 14 in water on ZnO as an alternative catalyst to TiO2,” J. Photochem. Photobio. A: Chem., Vol.162, pp.317-322 (2004).
D`Oliveira, J. C., Al-Sayyed, G. and Pichat, P., “Photodegradation of 2- and 3-chlorophenol in TiO2 aqueous suspensions,” Environ. Sci. Technol., Vol.24, pp.990-996 (1990).
Fujishima, A., Kato, T., Maekawa, E. and Honda, K., “Mechanism of the current doubling effect. I. the ZnO photoanode in aqueous solution of sodium formate,” Bull. Chem. Soc. Jpn., Vol.54, pp.1671-1674 (1981).
Gouvea, C. A., Wypych, F., Moraes, S. G., Duran, N., Nagata, N. and Zamora P. P., “Semiconductor-assisted photocatalytic degradation of reactive dye in aqueous solution,” Chemosphere, Vol.40, pp.433-440 (2000).
Jacoby, W. A., Blake, D. M., Noble, R. D. and Koval, C. A., “Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis,” J. Catal., Vol.157, pp.87-96 (1995).
Javier, D. and Javier, M., “Photocatalytical reduction of Cr(VI) over ZnO powder,” Electrochimica Acta, Vol.32, pp.1383-1386 (1987).

Khodja, A. A., Sehili T., Pilichowski, J. F. and Boule P., “Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions,” J. Photochem. Photobio. A: Chem., Vol.141, pp.231-239 (2001).
Lathasree, S., Rao, A. N., SivaSankar, B., Sadasivam. V. and Rengaraj, K., “Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions,” J. Mol. Catal. A: Chem., Vol.223, pp.101-105 (2004).
Liufu, S. C., Xiao, H. N. and Li, Y. P., “Investigation of PEG adsorption on the surface of zinc oxide nanoparticles,” Powder Technol., Vol.145, pp.20-24 (2004).
Muruganandham, M. and Swaminathan, M., “Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension,” Sol. Energ. Mat. Sol. C., Vol.81, pp.439-457 (2004).
Music, S., Dragcevic, D., Maljkovic, M. and Popovic, S., “Influence of chemical synthesis on the crystallization and properties of zinc oxide,” Mater. Chem. Phys., Vol.77, pp.521-530 (2002).
Obee, T. N., “Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor,” Environ. Sci. Technol., Vol.30, pp.3578-3584 (1996).
Okamoto, K.I., Yamamoto Y., Tanaka, H. and Tanaka, M., “Heterogeneous photocatalytic decomposition of phenol over TiO2 powder,” Bull. Chem. Soc. Jpn., Vol.58, pp.2015-2022 (1985).
Pralrie, M. R., Evans, L. R., Stange, B. M. and Matinze, S. L., “An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemicals,” Environ. Sci. Technol., Vol.27, pp.1776-1782 (1993).

Rabindranathan, S., Devipriya, S. and Yesodharan, S., “Photocatalytic degradation of phosphamidon on semiconductor oxides,” J. Hazard. Mater., Vol.B102, pp.217-229 (2003).
Roselin, L. S., Rajarajeswari, G. R., Selvin, R., Sadasivam, V., Sivasankar, B. and Rengaraj, K., “Sunlight/ZnO-mediated photocatalytic degradation of Reactive Red 22 using thin film flat bed flow photoreactor,” Sol. Energy., Vol.73, No.4, pp.281-285 (2002).
Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M. and Murugesan, V., “Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2,” Sol. Energ. Mat. Sol. C., Vol.77, pp.65-82 (2003).
Sawyer, C. N. and McCarty, P. L., Chemistry for Environmental Engineering, 3rd, McGraw-Hill, U.S.A., (1978).
Serpon, N. and Pelizzetti, E., Photocatalysis Fundamentals and Applications, John Wiley & Sons, New York, (1989).
Sharma, A., Rao, P., Mathur, R. P. and Aneta, S. C., “Photocatalytic reactions of xylidine ponceau on semiconducting zinc oxide powder,” J. Photochem. Photobio. A :Chem., Vol.86, pp.197-200 (1995).
Sreethawong, T., Suzuki, Y. and Yoshikawa S., “Synthesis characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol-gel process,” J. Solid State Chem., Vol.178, pp.329-338 (2005).
Stumm, W., Morgan, J. J., Aquatic Chemistry : An Introduction Emphasizing Chemical Equilibria in Natural Waters, Wiley, New York, (1981).

Stumm, W., Chemistry of the Solid-Water Interface, John Wiley & Sons, New York, (1992).
Weast, R. C., Handbook of Chemistry and Physics : A Ready-Reference Book of Chemical and Physical Data, CRC Press, Boca Raton, (1976).
Yatmaz, H. C., Akyol, A. and Bayramoglu, M., “Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions,” Ind. Eng. Chem. Res., Vol.43, pp.6035-6039 (2004).
Zheng, Y., Hill, D. O. and Juo, C. H., “Rates of ozonation of cresol isomers in aqueous solutions,” Ozone Sci. Eng., Vol.15, pp.267-278 (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔