(44.192.112.123) 您好!臺灣時間:2021/02/28 05:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃東斌
研究生(外文):Tung-Bin Huang
論文名稱:以紫外線/光觸媒過濾薄膜程序處理染料水溶液之研究
論文名稱(外文):Decomposition of Dye-containing Solutionby UV/Photocatalytic Membrane Process
指導教授:顧洋顧洋引用關係
指導教授(外文):Young Ku
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:159
中文關鍵詞:光催化氧化鋁陶瓷光觸媒過濾薄膜程序熱水解法二氧化鈦
外文關鍵詞:PhotocatalysisCeramic filtration tubesPhotocatalytic membrane processThermal hydrolysis methodTitanium dioxide
相關次數:
  • 被引用被引用:12
  • 點閱點閱:417
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:0
本研究以氧化鋁陶瓷過濾膜管為基材,於陶瓷過濾膜管內壁披覆P-25或熱水解法合成的二氧化鈦,並將含染料之水溶液以傳統光觸媒固定膜的掃流(未過濾)方式操作,或以新型光觸媒過濾薄膜反應器的貫流方式滲透過光觸媒薄膜,比較兩種反應器形式對於反應污染物去除的效果。研究結果顯示,新型光觸媒過濾薄膜反應器對反應污染物去除速率比傳統光觸媒固定膜反應器快3~5倍。這是因為新型光觸媒過濾薄膜反應器是藉由強制過濾的方式將反應污染物輸送通過光觸媒過濾薄膜,可以提升污染物與光觸媒的接觸,降低質傳限制對於反應速率的影響。本研究也將針對光觸媒過濾薄膜反應器處理染料水溶液之相關的變因進行探討,包括:溶液pH值、操作壓力、光強度、反應溫度、反應物起始濃度等,建立光觸媒過濾薄膜反應器的動力模式,以描述光觸媒過濾薄膜反應器對染料水溶液之光催化反應行為。
In this research, ceramic filter tubes were used as the supporting material for coating two types of titanium dioxide catalyst, Degussa P-25 and photocatalyst synthesized by thermal hydrolysis method. Solutions contained organic dyes were allowed to flow over the traditional photocatalytic film reactor or flow through this new photocatalytic membrane reactor. The reaction rates of the new photocatalytic membrane reactor are about three to five times faster than those of the traditional photocatalyic film reactor. This was caused by forced convection flow of organic dyes in the photocatalytic membrane reactor which would reduce the mass transfer resistance. The operational parameters studied included pH value, filtration pressure, light intensity, temperature and the initial dye concentration. A reaction kinetic model was established to describe the behavior of photocatalytic membrane process.
致謝.............................................................................................................I
中文摘要....................................................................................................II
英文摘要..................................................................................................III
目錄..........................................................................................................IV
圖表索引...............................................................................................VIII
符號索引...............................................................................................XIII
第一章 緒論..............................................................................................1
第二章 理論基礎與文獻回顧..................................................................3
2.1紫外線/光觸媒程序之理論基礎.................................................3
2.1.1 光化學反應之原理.............................................................3
2.1.2 光觸媒化學反應之原理.....................................................7
2.1.3 光觸媒表面吸附現象.......................................................10
2.2光反應器之發展與應用.............................................................13
2.2.1 光反應器之種類...............................................................13
2.2.2 二氧化鈦光觸媒製備方法...............................................21
2.2.3 二氧化鈦光觸媒塗佈方法...............................................22
2.3 紫外光/光觸媒過濾薄膜程序之反應原理與機制..................27
2.4 影響紫外線/光觸媒過濾薄膜程序的因素..............................34
2.4.1 反應初始濃度效應...........................................................34
2.4.2 紫外線光強度效應...........................................................35
2.4.3 溶液pH值效應.................................................................37
2.4.4 溶液溫度效應...................................................................40
2.4.5 操作壓力效應...................................................................41
第三章 實驗程序與設備........................................................................44
3.1 實驗儀器與設備........................................................................44
3.2 實驗藥品....................................................................................46
3.3 實驗裝置....................................................................................49
3.4 實驗步驟....................................................................................53
3.4.1 光觸媒製備與披覆...........................................................53
3.4.2 背景實驗...........................................................................57
3.4.3 以紫外線/光觸媒過濾薄膜程序處理含染料水溶液......58
3.5 分析測定方法...........................................................................61
3.5.1 染料濃度分析...................................................................61
3.5.2 光觸媒定性分析...............................................................61
第四章 實驗結果與討論........................................................................62
4.1 實驗目的....................................................................................62
4.2 二氧化鈦光觸媒薄膜製備........................................................63
4.2.1 以P-25製備二氧化鈦薄膜製備.......................................63
4.2.2 以熱水解法製備二氧化鈦薄膜.......................................63
4.2.3 光觸媒定性分析與反應效果比較...................................64
4.3 光觸媒過濾薄膜基本特性探討................................................70
4.3.1 孔徑分析...........................................................................70
4.3.2 光觸媒薄膜表面帶電性...................................................70
4.3.3 薄膜孔洞特性...................................................................73
4.4 背景實驗....................................................................................81
4.4.1 反應物吸附實驗...............................................................81
4.4.2 紫外線直接光解實驗.......................................................81
4.4.3 光觸媒活性測試實驗.......................................................82
4.5以紫外線/光觸媒薄膜程序處理含染料Acid red 4水溶液......84
4.5.1 染料特性分析...................................................................84
4.5.2 反應器形式.......................................................................87
4.5.3 反應初始濃度效應...........................................................90
4.5.4 紫外線光強度效應...........................................................95
4.5.5 溶液pH值效應...............................................................100
4.5.6 溶液溫度效應.................................................................104
4.5.7 操作壓力效應.................................................................106
4.5.8 動力模式建立..................................................................110
4.6以紫外線/光觸媒薄膜程序處理含染料Acid orange 10水溶液
...................................................................................................118
4.6.1 染料特性分析...................................................................118
4.6.2 反應器形式......................................................................121
4.6.3 反應初始濃度效應..........................................................123
4.6.4 紫外線光強度效應..........................................................126
4.6.5 溶液pH值效應................................................................132
4.6.6 動力模式建立..................................................................136
第五章 結論與建議..............................................................................142
參考文獻................................................................................................145
附錄........................................................................................................153
作者簡介................................................................................................159
王文,“以光纖反應器進行紫外線光觸媒程序分解氣相中苯之研究”,國立台灣科技大學化學工程系博士論文 (2003)
王國華,“以紫外線/二氧化鈦程序處理氣相中三氯乙烯之研究”,國立中興大學環境工程學研究所碩士論文 (1996)
申永順,“以高級氧化程序處理揮發性有機污染物反應行為及光反應設計器設計之研究”,國立台灣科技大學化學工程系博士論文 (1998)
林彥志,“以TiO2光觸媒電極分解亞甲基藍之變因探討及動力學研究”, 國立台灣大學化學工程學系碩士論文 (2000)
吳宗南,“電解Fenton法處理染料染整廢水之可行性研究”,中央大學環境工程研究所碩士班 (1996)
馬志明,“以紫外線/二氧化鈦程序處理氣相三氯乙烯污染物反應行為研究”,國立台灣科技大學化學工程學系碩士論文 (1998)
曾焜煜,“以紫外線/光觸媒程序處理氣相丙酮反應行為之研究”,國立台灣科技大學化學工程學系碩士論文 (2004)
陳俊翔,“二氧化鈦觸媒製備對氣相苯與甲苯光催化分解之影響”,國立台灣科技大學化學工程學系碩士論文 (2000)
莊英良,“以紫外線/二氧化鈦程序分別處理含六價鉻及亞素靈水溶液反應行為之研究”,國立台灣科技大學化工研究所碩士論文 (1996)
蔡環鴻,“以二氧化鈦光觸媒進行氣相中三氯乙烯之光催化反應研究”,國立中興大學環境工程學研究所碩士論文 (1997)

劉安治,“近紫外光/二氧化鈦催化分解氣相中低濃度四氯乙烯之操作參數探討”,國立中興大學環境工程學研究所碩士論文 (1997)
江立偉,“以紫外線/光觸媒程序處理空氣中苯、甲苯及二甲苯氣體之反應行為”,國立台灣科技大學化學工程學系碩士論文 (1999)
李佩玲,“極微濾薄膜技術處理染料水溶液之研究”,國立台灣科技大學化學工程學系碩士論文 (2003)
羅健峰,“奈米TiO2鍍膜與光纖反應器設計”,國立台灣大學化學工程學系碩士論文 (2003)
賴保帆,“以UV/TiO2程序處理偶氮染料之分解反應研究”, 國立中興大學環境工程學研究所碩士論文 (2000)
鄭惠芬,謝永旭,“去除水中2,4-二氯酚污染物之光催化反應研究”,第十九屆廢水處理技術研討會論文集,台北,pp.754-760 (1994)
邱永亮,“染色化學”,徐氏基金會出版 (1977)
邱永亮,劉泰庠,“染料之合成與特性”,徐氏基金會出版 (1992)
Akbari, A., Desclaux, S., Remigy, J. C., and Aptel, P., “Treatment of Textile Dye Effluents Using a New Photografted Nanofiltration Membrane,” Desalination, Vol.149, pp.101-107 (2002a)
Akbari, A., Remigy, J. C., and Aptel, P., “Treatment of Textile Dye Effluent Using a Polyamide-Based Nanofiltration Membrane,” Chem. Eng. Process., Vol.41, pp.601-609 (2002b)
Arvan, B., Khakifirooz, A., Tarighat, R., Mohajerzadeh, S., Goodarzi, A., Soleimani, E., and Arzi, E., “Atmospheric Pressure Chemical Vapor Deposition of Titanium Dioxide Films from PtCl4,” Mater. Sci. Eng. B, Vol.109, pp.17-23 (2004)
Barbe, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., and Gratzel, M., “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications,” J. Am. Ceram. Soc., Vol.80, pp.3457-3171 (1997)
Bhowmick, M., and Semmens, M. J., “Ultraviolet Photooxidation for the Destruction of VOCs in Air,” Wat. Res., Vol.28, pp.2407-2415 (1994)
Chen, C. T., Graham, J. L., and Dellinger, B., “Photothermal Destruction of the Vapor of Organic Compounds,” Waste Manage., Vol.15, pp.159-167 (1995)
Chen, D. W., Sivakumar, M., and Ray, A. K., “Heterogeneous Photocatalysis in Environmental Remediation,” Develop. Chem. Eng. Miner. Process., Vol.8, pp.505-550 (2000)
Chen, L. C., and Chou, T. C., “Kinetics of Photodecolorization of Methyl Orange Using Titanium Dioxide as Catalyst,” Ind. Eng. Chem. Res., Vol.32, pp.1520-1527 (1993)
Chin, M. L., Abdul, R. M., and Subhash, B., “Performance of Photocatalytic Reactors Using Immobilized TiO2 Film for the Degradation of Phenol and Methyleneblue Dye Present in Water Stream,” Chemosphere, Vol.57, pp.547-554 (2004)
Comparelli, R., Fanizza, E., Curri, M. L., Cozzoli, P. D., Mascolo, G., Passino, R., and Agostiano, A., “Photocatalytic Degradation of Azo Dyes by Organic-Capped Anatase TiO2 Nanocrystals Immobilized onto Substrates,” Appl. Catal. B: Environ., Vol.7, pp.81-91 (2005)
Davis, R. J., Gainer, J. L., O'Neal, G., and Wu, I. W., “Photocatalytic Decolorization of Wastewater Dyes,” Wat. Environ. Res., Vol.66, pp.55-53 (1994)

Davydoc, L., Pratsinis, S. E., and Smirniotis, P. G., “The Intrinsic Catalyst Activity in Photoreactor,” Environ. Sci. Technol., Vol.34, pp.3435-3442 (2000)
Dibble, L. A., and Raupp, G. B., “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams,” Environ. Sci. Technol., Vol.26, pp.492-500 (1992)
Dixon, A. G., and Nijemeisland, M. “CFD as a Design Tool for Fixed-bed Reactors,” Ind. Eng. Chem. Res., Vol.40, pp.5246-5254 (2001)
Einaga, H., Futamura, S., and Ibusuku, T., “Complete Oxidation of Benzene in Gas Phase by Platinized Titania Photocatalysts,” Environ. Sci. Technol., Vol.35, pp.1880-1884 (2001)
Fang, C. S., and Chen, Y. W., “Preparation of Titania Particles by Thermal Hydrolysis of TiCl4 in n-Propanol Solution,” Mater. Chem. Phys., Vol.78, pp.739-745 (2003)
Fernandez, A., Lassaletta, G., Jimenze, V. M., Justo, A., Gonzalze-Elipe, A. R., Herrmann, J. M., Tahiri, H., and Ait-Ichou, Y., “Preparation and Characterization of TiO2 Photocatalysts Supported on Various Rigid Supports (Glass, Quartz and Stainless Steel). Comparative Studies of Photocatalytic Activity in Water Purification,” Appl. Catal. B: Environ., Vol 7, pp.49-63 (1995)
Fogler, H. S., Elements of Chemical Reaction Engineering, 3rd ed., Prentice-Hall Inc., New Jersey, U.S.A (1999)
Hasnat, M. A., Siddiquey, I. A., and Nuruddin, A., “Comparative Photocatalytic Studies of Degradation of a Cationic and an Anionic Dye,” Dyes. Pigm., Vol.66, pp.185-188 (2005)

Ho, W. S., and Sirkar, K. K., Membrane Handbook, Van Nostrand Reinhold, New York, U.S.A. (1992)
Hung, C. H., and Marinas, B. J., “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” Environ. Sci. Technol., Vol.31, pp.562-568 (1997)
Jacoby, W. A., Blake, D. M., Noble, R. D., and Koval, C. A., “Kinetics of the Oxidation of Trichloroethylene in Air via Heterogeneous Photocatalysis,” J. Catal., Vol.157, pp.87-96 (1995)
Jacoby, A. M., Blake, D. M., Fennel, J. A., Boulter, J. E., and Vargo, L. M., “Heterogeneous Photocatalysis for Control of Volatile Organic Compound in Indoor Air,” J. Air. Waste Manag. Assoc., Vol.46 pp.891-898 (1996)
Javier, D., and Javier, M., “Photocatalytical Reduction of Cr(VI) over ZnO Powder,” Electrochimica Acta.,Vol.32, pp.1383-1386 (1987)
Kim, E. K., Son, M. H., Min, S. K., Han, Y. K., and Yom, S. S., “Growth of Highly Oriented TiO2 Thin Films on InP(100) Substrates by Metallorganic Chemical Vapor Deposition,” J. Cryst. Growth., Vol.170, pp.803-807 (1997)
Kiriakidou, F., Kondarides, D. I., and Verykios, X. E., “The Effect of Operational Parameters and TiO2-Doping on the Photocatalytic Degradation of Azo-Dyes,” Catal. Today, Vol.54, pp.119-130 (1999)
Konstantinou, I. K., and Albanis, T. A., “TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution : Kinetic and Mechanistic Investigations,” Appl. Catal. B:Environ., Vol.49, pp.1-14 (2004)

Kumazawa, H., Inoue, M., and Kasuya, T., “Photocatalytic Degradation of Volatile and Nonvolatile Organic Compounds on Titanium Dioxide Particles Using Fluidized Beds,” Ind. Eng. Chem. Res., Vol.42, pp.3237-3244 (2003)
Laidler, K. J., and Meiser, J. H., Physical Chemistry, 2nd ed., Houghton Mifflin Company, Boston, Toronto (1995)
Ling, C. M., Mohamed, A. R., and Bhatia, S., “Performance of Photocatalytic Reactors Using Immobilized TiO2 Film for the Degradation of Phenol and Methylene Blue Dye Present in Water Stream,” Chemosphere, Vol.57, pp.547-554 (2004)
Matsumoto, Y., Shimizu, T., Toyoda, A., and Sato E. I., “New Preparation Method for Doped Polycrystalline TiO2 and Nb2O5 and Their Photoelectrochemical Properties,” J. Phys. Chem., Vol.86, pp.3581-3585 (1982)
Matthew, R. W., “Photooxidation of Organic Impurities in Water Thin Films of Titanium Dioxide,” J. Phys. Chem., Vol.91, pp.3328-3333 (1987)
Obee, T. N., and Hay, S. O., “Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania,” Environ. Sci. Technol., Vol.31, pp.2034-2038 (1997)
Ollis, D. F., Pelizzetti, E., and Serpone, N., “Destruction of Water Contaminants,” Environ. Sci. Technol., Vol.25, pp.1523-1529 (1991)
Ollis, D. F., “Photoreactors for Purification and Decomposition of Air,” The 1st International Conference on TiO2 Photocatalytic and Treatment of Water and Air, London, Ontario, Canada, pp.481-494 (1992)

Park, H. K., Kim, D. K., and Kim, C. H., “Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4,” J. Am. Ceram. Soc., Vol.80, pp.743-749 (1997)
Peill, N. J., and Hoffmann, M. R., “Chemical and Physical Characterization of a TiO2-Coated Fiber Optic Cable Reactor,” Environ. Sci. Technol., Vol.30, pp.2806-2812 (1996)
Pralrie, M. R., Evans, L. R., Stange, B. M., and Matinze, S. L., “An Investigation of TiO2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals,” Environ. Sci. Technol., Vol.27, pp.1776-1782 (1993)
Saquib, M., and Muneer, M., “TiO2-Mediated Photocatalytic Degradation of a Triphenylmethane Dye (Gentian Violet), in Aqueous Suspensions,” Dyes. Pigm., Vol. 56, pp.37-49 (2003)
Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzctti, E., and Hidaka, H., “Exploiting the Interparticle Electron Transfer Process in the Photocatalysted:Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors,” J. Photochem. Photobio. A:Chem., Vol.85 pp.247-255 (1995)
So, C. M., Cheng, M. Y., Yu, J. C., and Wong, P. K., “Degradation of Azo Dye Procion Red MX-5B by Photocatalytic Oxidation,” Chemosphere, Vol.46, pp.905-912 (2002)
Spurr, R. A., and Myers, H., “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer,” Anal. Chem., Vol.29, pp.760-762 (1957)
Tanaka, Y., and Suganuma, M., “Effects of Heat Treatment on Photocatalytic Property of Sol-Gel Deriverd Polycrystalline TiO2,” J. Sol-Gel Sci. Technol., Vol.22, pp.83-89 (2001)
Tang, C., and Chen, V., “Nanofiltration of Textile Wastewater for Water Reuse,” Desalination, Vol.143, pp.11~20 (2002)
Tsuru, T., Toyosada, T., Yoshioka, T., and Asaeda, M., “Photocatalytic Membrane Reactor Using Porous Titanium Oxide Membranes,” J. Chem. Eng. Jpn., Vol.36, pp.1063-1069 (2003)
Wang, K. H., Hsieh, Y. H., Chao, P. W., and Chang, C. Y., “The Photocatalytic Degradation of Trichloroethane by Chemical Vapor Deposition Method Prepared Titanium Dioxide Catalyst,” J. Hazard. Mater., Vol.95, pp.161-174 (2002)
Wei, T. Y., and Wan, C. C., “Kinetics of Photocatalytic Oxidation of Phenol on TiO2 Surface,” J. Photochem. Photobiol. A:Chem., Vol.69, pp.241-249 (1992)
Wei, Y., Wu, R., and Zhang, Y., “Preparation of Monodispersed Spherical TiO2 Powder by Forced Hydrolysis of Ti(SO4)2 Solution,” Mater. Lett., Vol.41, pp.101-103 (1999)
Yasir, V. A., MohanDas, P. N., and Yusuff, K. K. M., “Preparation of High Surface Area TiO2(Anatase) by Thermal Hydrolysis of Titanyl Sulphate Solution,” Int. J. Inorg. Mater., Vol.3, pp.593-596 (2001)
Yi, G., Wu, Z., and Sayer, M., “Preparation of Pb (Zr,Ti) O3 Thin Films by Sol Gel Processing:Electrical, Optical, and Electro-Optic Properties,” J. Appl. Phys., Vol.64, pp.2717-2724 (1988)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 郭生玉 (1987)。教師工作心厭與背景因素關係之研究。教育心理學報,20,37-45。
2. 施耀昇 (1991)。教師工作倦怠研究的理論模式及實徵研究之探討。嘉義師院學報,5,89-122。
3. 林純文 (1996)。國民小學組織氣候、教師工作壓力及其因應方式之研究。國立屏東師範學院國民教育研究所士論文,未出版,屏東。
4. 林炎旦 (1995)。國民小學教師教學倦怠之研究。國民教育研究學報,1,57-84。
5. 李明書 (1994)。工作壓力及其管理策略之探討。勞工行政,74,22-28。
6. 21.蔡肇鵬,「高速公路交通管理系統之建立」,中華道路第33卷,民國83年10月,第24-39頁。
7. 郭生玉 (1990)。工作壓力與專業態度對教師工作心厭高低之區別功能研究。教育心理學報,23,71-98。
8. 郭生玉 (1993)。影響教師工作心厭之分析研究。教育心理學報,27,67-79。
9. 黃正鵠、鄭英耀 (1989)。國民中學老師工作壓力、成就動機與職業倦怠關係之研究。教育學刊,8,133-175。
10. 黃義良 (1999)。國小兼任行政工作教師的工作壓力與調適方式之研究。國立屏東師範學院國民教育研究所碩士論文,未出版,屏東。
11. 張曉春 (1983)。專業人員工作疲乏形成模式-以社會工作者為例。思與言,2,179-201。
12. 楊誌卿 (1997)。教師的工作壓力與自我調適。社教資料雜誌,225,9-11。
13. 蔡璧煌 (1989)。國民中小學教師壓力之研究。師大學報,14,75-114。
 
系統版面圖檔 系統版面圖檔