(3.220.231.235) 您好!臺灣時間:2021/03/07 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:康稚暘
研究生(外文):Jhihyang Kang
論文名稱:直昇機模擬及動態調整之研究
指導教授:蘇順豐
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:93
語文別:英文
外文關鍵詞:motion cuemodel of Helicopter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Abstract

In this thesis, the Lynx helicopter model provided by a research tem of ChengKong University is used as the prototype for developing a helicopter simulation model. The original system is coded in the Matlab environment and can only be simulated for a certain snapshot. In our study, we re-coded the system by C++ and by including the Runge-Kutta numerical approach, the system can be simulated for a period of time. Simple controllers are also designed to stabilize the system. Through verification, the ranges of the controller are then obtained for feasible simulation. Since there are many types of helicopters and different helicopters have different parameters, in order to simulate different helicopters, we need a way of generating different flight characteristics for different helicopters. Motion cue is a way of transforming motion. Thus, in this study, we also developed a motion cue transformation for tuning flight characteristics. A convolution approach for tuning flight characteristics is proposed in our study. The Kalman filter is also adopted to estimate motion beyond the boundaries of the used controller ranges. Simulation results show effectiveness of the proposed approaches.
Content

Chinese abstract…………………………………………………………………i
English abstract…………………………………………………………………ii
誌謝.................................................................................................................iii
Content……..…………………………………………………………………...iv
Figure list……………………………………………………………………...vi

Chapter 1 Introduction
1-1 Research background and motivations………………………………............1
1-2 Thesis Organization………………………………………………….............2
Chapter 2 Helicopter Model and Controller Design
2-1 Helicopter Model………………………………………………………….....3
2-2 Helicopter Control………………………………………………………...…4
2-3 Dynamic Models of Helicopters…………………………………………..…7
2.3 The Structure of Simulation of Helicopter………………………..9
2-4 Helicopter Controller Design……………………………………………….11
2-4-1 Design Basis………………………………………………………...11
2-4-2 Design of Collective Pitch Controllers……………………………...12
2-4-3 Design of Vertical and Horizontal Cyclic Pitch Control…………....16
2-5 Simulation Results of Using Our Model……………………………………19
2-6 The limits of the controller of the helicopter……………………………….24
2-7 Run-Time Infrastructure (RTI)…………………………………………...…25
Chapter 3 Motion Cue
3-1 Introduction of motion cue………………………………………………….31
3-2 Using Simple Scaling in Motion Cue……………………………………....33
3-3 Using Convolution in Motion Cue………………………………………….37
Chapter 4 Using Kalman Filter for Unbounded Input
4-1 Unbounded Input and Kalman filter……………………………………..…43
4-2 simulation results………………………………………………………...…46
Chapter 5 Conclusions and Future Work……………………………………………..50

Reference…………………………………………………………………………..…52


















Figure List

Figure 2-1 Bamboo dragonfly…………………………………………………………3
Figure 2-2 The basic movement mode of helicopters………………………………....4
Figure 2-3 Cyclic pitch controls……………………………………………………….5
Figure 2-4 The main roto mechanism……………………………………………….7
Figure 2-5 Five sub-systems of helicopter…………………………………………….8
Figure 2-6 Math modele of helicopter……………………………………………10
Figure 2-7 body coordinate system and velocities and angle speeds in three axes…..11
Figure 2-8 the free response of in the hover state…………………...…16
Figure 2-9 The free response of in the hover state………………………..17
Figure 2-10 The free responses of in the hover state………………..…17
Figure 2-11 The free response of the main rotor speed in the hover state…………...17
Figure 2-12 The response of ……………………………………………18
Figure 2-13 The response of ……………………………………………….18
Figure 2-14 The response of ……………………………………………19
Figure 2-15 The response of the main rotor speed…………………………………...19
Figure 2-16 the velocities of the helicopter…………………………………………..20
Figure 2-17 the angular velocities of the helicopter………………………………….21
Figure 2-18 The flight trajectory of the helicopter…………………………………...21
Figure 2-19 the velocities of the helicopter for direction following………………....22
Figure 2-20 the angular velocities of the helicopter for direction following……...…23
Figure 2-21 The flight trajectory of the helicopter for direction following………….23
Figure 2-22 HLA software component functions…………………………………….26
Figure 2-23 Software component functions……………………………………….…28
Figure 2-24 intercommunications of federates and libRTI…………………………..28
Figure 2-25 The windows of transmission of TCP/IP……………………………..…30
Figure 3-1 The process of motion cue design………………………………………..31
Figure 3-2 The motion cue design process with fuzzy models……………………....33
Figure 3-3 the red line is for and green line is for ……………………………34
Figure 3-4 the red line is for and green line is for …………………………....35
Figure 3-5 the red line is for =1 and green line is for =1.1…………………...36
Figure 3-6 The red line is for and green line is for ………………………….40
Figure 3-7 The red line is for and green line is for ………………………....41
Figure 3-8 The red line is for =1 and green line is for =1.1…………………..42
Figure 4-1 [34]Operation of KALMAN FILTER…………………………………....44
Figure 4-2 Velocity increases form 2m/s to 4m/s. The red line is the simulation result, and the green one is the estimated value…………………………………47
Figure 4-3 Velocity increases form 4m/s to 8m/s. The red line is the simulation result, and the green one is the estimated value………………………………....47
Figure 4-4 Velocity increases form 8m/s to 16m/s. The red line is the simulation result, and the green one is the estimated value………………………………....48
Figure 4-5 Velocity increases form 2m/s to 4m/s. The green line is the simulation result, and the red line is the estimated value…………………………….48
Figure 4-6 Velocity increases form 4m/s to 8m/s. The green line is the simulation result, and the red one is the estimated value…………………………….49
Figure 4-7 Velocity increases form 8m/s to 16m/s. The green line is the simulation result, and the red one is the estimated value…………………………….49


Table 2.1 decision rule base, where ……………………………………15
Table 2-2 simulation motions and its corresponding parameters…………………….20
Table 2-3 simulation motions and its corresponding parameters while follows the flight directions……………………………………………………………22
Table 2-4 The limits of velocities and accelerations of the proposed controllers…....24
Table 3-1 The relations between motions and actuators……………………………..32
References
[1]G. D. Padfield, Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling, Education Series, AIAA, 1995.
[2]AVSCOM, Aeronautical Design Standard (ADC) 33C – Handling Qualities for Military Helicopters, US Army AVSCOM, 1989.
[3]G.-Y. Chen, On the Study of the Learning Performance for Neural Networks and Neural Fuzzy Networks, Master Thesis, Dept. of Electrical Engineering, NTUST, 1998.
[4]R. A. Hess and Y. C. Jung, “An application of generalized predictive control to rotorcraft terrain-following flight,” IEEE Trans. On Systems, Man, and Cybernetics, vol. 19. No. 5, pp. 955-962, 1989.
[5]K. G. Shin and X. Cui, “Design of a knowledge-based controller for intelligent control systems”, IEEE Trans. On Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 368-375, 1991.
[6]蕭志清, ”具調適能力之階層式智慧型控制器,” 國立台灣工業技術學院電機工程技術學程碩士學位論文, 1993.
[7]柯正和, “自我修正能力之預估器,” 國立台灣工業技術學院電機工程技術學程碩士學位論文, 1994.
[8]A. J. Calise and R. T. Rysdyk, “Nonlinear adaptive flight control using neural networks,” IEEE Control Systems, vol. 18, no. 6, pp.14-25, 1998.
[9]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 116-131,1985.
[10]M. Sugeno and G. T. Kang, “Fuzzy modeling and control of multilayer incinerator,” Fuzzy Sets and Systems, vol. 18, pp. 329-346, 1986.
[11]A. Bemporad, A. Casavola, and E. Mosca, “Nonlinear control of constrained linear systems via predictive reference management,” IEEE Trans. on Automatic Control, vol. 42, no. 3, 1997.
[12]R. Scattolini and N. Schiavoni, “A multirate model-based predictive controller,” IEEE Trans. Autom. Contr., vol. 40, no. 6, pp. 1093-1097, 1995.
[13]C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: Theory and practice---A survey,” Automatica, vol. 25, pp. 335-348, 1991.
[14]D. W. Clarke, “Advances in model-based predictive control,” in Advances in Model-Based Predictive Control, D. W. Clarke, Ed. Oxford Univ. Press, 1994.
[15]J. Richalet, “Industrial applications of model based predictive control,” Automactica, vol. 29, pp. 1251-1274, 1993.
[16]D. W. Clark and R. Scattolini, “Constrained receding horizon predictive control,” Proc. IEE-D, vol. 138, pp. 347-354, 1991.
[17]D. Q. Mayne and H. Michalska, “Receding horizon control of nonlinear systems, “ IEEE Trans. Automat. Contr., vol. AC-35, pp.814-824, 1990.
[18]J. B. Rawlings and K. R. Muske, “The stability of constrained receding horizon control,” IEEE Trans. Automat. Contr., vol. AC-38, pp. 1512-1516, 1993.
[19]P. Colaneri, R. Scattolini, and N. Schiavoni, “Stabilization, regulation, and optimization of multirate sampled-data systems,” in Control and Dynamic Systems, C. T. Leondes, Ed. New York: Academic, in press.
[20]L.-X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples”, IEEE Trans. on Systems, Man, and Cybernetics, vol.22, no.6, pp. 1414-1427, 1992
[21]蘇順豐, “以模擬學習方式架構機械手臂之混合式軌跡規劃”, 國立台灣工業技術學院電機工程技術學程國科會專題研究計畫成果報告, 8月, 1995.
[22]B.-D. Liu and C.-Y. Huang, “Design and implementation of the tree-based fuzzy logic controller”, IEEE Trans. on Systems, Man, and Cybernetics, vol. 27, no. 3, pp. 475-487, 1997.
[23]陳誠章, “自我調適模糊制器之研發與實現”, 國立台灣工業技術學院電機工程技術學程專題研究計畫成果報告, 11月,1994.
[24]J. B. Zigler, and N. B. Nichols, “Optimum setting for automatic controllers,” Trans. ASME, vol. 64, pp. 759-768, 1942.
[25]K. J. Astrom and T. Hagglund, “Automatic tuning of simple regulators with specifications on phase and amplitude margins,” Automatica, vol. 20, no. 5, pp. 645-651, 1984.
[26]M. F. Weilenmann and H. P. Geering, “Test Bench for rotorcraft hover control,” J. of Guidance, Control, and Dynamics, vol. 17, no. 4, pp. 729-736, 1994
[27]邱岱瑋, “直昇機動態模式的建立”,國立成功大學航太所碩士論文,June, 1998.
[28]Jane’sAll The World’s Aircraft, Jane’s Information Group, 1995.
[29]Anon, General Requirements for Helicopter Flying and Ground Handling Qualities, Mil H-8501A, 1961.
[30]USAF, Flying Qualities of Piloted Airplanes, Mil F-8785C, USAF, 1980.
[31]http://www.flightgear.org/
[32]張鴻祥, “虛擬實境之六軸動感平台控制與系統整合”, 國立交通大學電機與控制工程學系, 碩士論文 1998.
[33] C.-Y. Fang, S.-W. Chen, and C.-S. Fuh,” Road-sign detection and tracking” IEEE Transactions on Vehicular Technology, vol. 52, no. 5, 2003.
[34] G. Welch and G. Bishop. “An introduction to the Kalman filter,” 1999,
[Online]. Available: http://www.cs.unc.edu~welch/ kalmanIntro.html
[35]陳正達,”動作模擬之沖淡濾波器與動作軌跡設計之研究”國立台灣科技大學電機工程系碩士論文2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔