(3.239.56.184) 您好!臺灣時間:2021/05/13 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范揚欣
研究生(外文):Yang-Hsin Fan
論文名稱:直線倒單擺於斜面甩上及平衡定位控制
論文名稱(外文):Swing up and Balance Control of an Inverted Pendulum on a Solpe Surface
指導教授:施慶隆施慶隆引用關係
指導教授(外文):Ching-Long Shih
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:128
中文關鍵詞:倒單擺極點配置法FPGAPID模糊控制器
外文關鍵詞:Inverted PendulumPole-PlacementFPGAPID Fuzzy Control
相關次數:
  • 被引用被引用:5
  • 點閱點閱:193
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
直線倒單擺系統為一個非線性不穩定且同時具有非極小相之系統,因而被廣泛的用於驗證各種線性及非線性控制系統理論。本文之目的為斜面使用FPGA實現直線倒單擺之甩上及平衡定位PID及模糊控制器;其控制目標為先將斜面直線倒單擺由初始下垂位置逐漸甩上至垂直位置附近,然後隨即控制倒單擺保持平衡及滑台定位。經由電腦模擬及實驗結果可證明本文所設計的FPGA PID及模糊控制器可以成功地達到預期的控制目標。
Linear-inverted pendulum system is a nonlinear unstable system that has non-minimum phase characteristic and it has been widely used to demonstrate the effectiveness of linear/nonlinear control theorem. The purpose of this work is to design FPGA PID/Fuzzy controllers to swing up a sloped linear pendulum from the stationary hanging state to the upright position and followed by balancing and positioning it about the vertical position. Computer simulations and experimental results are performed to illustrate the feasibility and effectiveness of the proposed control methods.
中文摘要………………………………………………………………………………Ⅰ
英文摘要………………………………………………………………………………Ⅱ
誌謝……………………………………………………………………………………Ⅲ
目錄……………………………………………………………………………………Ⅳ
圖表索引………………………………………………………………………………Ⅶ
第一章 緒論…………………………………………………………………………1
1.1 研究目的與動機……………………………………………………1
1.2 文獻回顧……………………………………………………………2
1.3 論文架構……………………………………………………………7
第二章 直線倒單擺數學模型………………………………………………………8
2.1 直線倒單擺於斜面上之數學模型…………………………………8
2.2 直線單擺於斜面甩上之模學模型…………………………………17
2.3 控制器模型…………………………………………………………21
2.3.1 PID控制器簡介………………………………………21
2.3.2 模糊控制器簡介………………………………………22
第三章 直線倒單擺系統控制器設計及模擬…………………………………………28
3.1 單擺甩上之策略與能量分析…………………………………………28
3.1.1 單擺甩上方法(一) ……………………………………30
3.1.2 單擺甩上方法(二)……………………………………33
3.1.3 單擺甩上方法(三)……………………………………36
3.1.4 單擺甩上方法(四)……………………………………39
3.2 直線倒單擺平衡定位控制器設計與模擬……………………………43
3.2.1 倒單擺平衡方法(一)…………………………………43
3.2.2 倒單擺平衡方法(二)…………………………………45
3.2.3 倒單擺平衡方法(三)…………………………………47
第四章 直線倒單擺系統控制器實現………………………………………………………51
4.1 直線倒單擺系統簡介………………………………………………51
4.2 FPGA實現週邊硬體電路……………………………………………56
4.2.1 濾波器模組及解碼器模組模擬………………………56
4.2.2 PWM模組及計數器模組模擬…………………………58
4.3 Nios處理器實現運動控制器………………………………………60
4.3.1 設計PID控制器………………………………………60
4.3.2 設計模糊控制器………………………………………62
4.4 FPGA實現運動控制器………………………………………………63
4.4.1 PID控制器模組模擬…………………………………63
4.4.2 模糊控制器模組模擬…………………………………65
4.5 Nios運動控制器與FPGA運動控制器之比較………………………67
第五章 實驗結果………………………………………………………………………69
5.1 直線倒單擺系統於平面實驗結果……………………………………72
5.1.1 單擺系統於平面甩上實驗結果………………………72
5.1.2 倒單擺系統於平面平衡定位實驗結果………………74
5.1.3 倒單擺系統於平面甩上平衡定位實驗結果…………77
5.2 直線倒單擺系統在斜坡上實驗結果…………………………………79
5.2.1 單擺系統於斜面甩上實驗結果………………………79
5.2.2 倒單擺系統於斜面平衡定位實驗結果………………81
5.2.3 倒單擺系統於斜面甩上平衡定位實驗結果…………84
第六章 結論與未來展望………………………………………………………………87
6.1 結論………………………………………………………………………………87
6.2 未來展望…………………………………………………………………………88
參考文獻…………………………………………………………………………………90
附錄A………………………………………………………………………………………95
附錄B……………………………………………………………………………………124
[1] Yamakita M., Iwashiro M., Sugahara Y., and Furuta K. ,“Robust swing up control of double pendulum,” Proceedings of the American ControlConference, Vol. 1 of 21–23, pp. 290-295,Seattle, Washington USA, June 1995.

[2] Lozano R., Fantoni I., and Block D. J. ,“ Stabilization of the inverted pendulum around its homoclinic orbit,” System & Control Letters ,Vol. 40, pp. 197-204,July 2000.

[3] Kristi_c M., Kanellakopoulos I., and Kokotivi_c P. V. ,“Passivity and parametric robustness of a new class of adaptive systems,” Automatica, Vol. 30,pp. 1703-1716, 1994.

[4] Furuta K., Yamakita M., and Kobayashi S. ,“Swing up control of inverted pendulum,” International Conference on Industrial Electronics,Control and Instrumentation, Vol. 3, pp. 2193-2198,Kobe, Japan, October 1991.

[5] Spong M. W. ,“The swing up control problem for the acrobot,” IEEE Control Systems Magazine, Vol.15, 1,pp. 49-55, 1995.

[6] Spong M. W., and Praly L. ,“Energy based control of underactuated mechanical systems using switching and saturationi,” Reprints of the BlockIsland workshop on control using logic-based switching, pp. 86-95, 1995.

[7] Wiklund M., Kristenson A., and Astraom K. J. ,“A new strategy for swinging up an inverted pendulum,” Preprints IFAC 12th world congress, Sydney, Australia, 1993.

[9] Yamakita M., Nonaka K., and Furuta K. ,“Swing up control of double pendulum,” Proceedings of the American Control Conference, pp. 2229-2233, SanFrancisco, California USA, June 1993.

[10] Astromom K. J., and Furuta K. ,“Swinging up a pendulum by energy control,” Automatica 36, pp. 287-295, 2000.

[11] Spong, M. W., Corke, P., and Lozano, R. ,“Nonlinear control of the reaction wheel pendulum,” Automatica 37, pp. 1845-1851, November 2001.

[12] C. E. Lin and Y. R. Sheu ,“A Hybrid-Control Approach for Pendulum-Car Control, ” IEEE Trans. on Industrial Electronics, Vol. 39, No. 3, pp. 208-214, 1992.

[13] I. I. Kim and J. H. Lee, “A New Approach to Adaptive Member- ship Function for Fuzzy Interface System, ”Knowledge-Based Intelligent Information Engineering Systems, Third International Conference, pp.112-116, 1999.

[14] K. Furuta, “Design of Variable Structure Controllers, ” IEEE Proc. of the 39th Conf. on Decision and Control, pp. 1685-1690, 2000.

[15] M. Widjaja and S. Yurkovich, “Intelligent Control for Swing Up and Balancing of an Inverted Pendulum System, ” Proc. of the 4th IEEE Conf. on Control Appl., pp. 534-542, 1995.

[16] S. Kawaji and K. Ogasawara, “Swing Up Control of a Pendulum using Genetic Algorithms, ” Proc. of the 33rd IEEE Conf. on Decision and Control, pp. 3530-3532, 1994.

[17] S. U. Cheang and W. J. Chen, “Stabilizing Control of an Inverted Pendulum System Based on Loop Shaping Design Procedure, ”IEEE APEC, pp. 272-280, 1997.

[18] S. J. Huang and C. L. Huang, “Control of an Inverted Pendulum Using Gray Prediction Model, ” IEEE Trans. on Industry Applications, Vol. 36, No. 2, pp. 452-458, 2000.

[19] H. Osinga and J. Hauser, “On Geometry of Optimal Control: the Inverted Pendulum Example, ” Proc. of American Control Conference, pp. 25-27, 2001.

[20] J. L. Lin and W. J. Yang, “Modified IVSC Stabilization and Swing Up Control of an Inverted Pendulum, ” Automatic Control Conference of Taiwan R.O.C., pp.150-153, 1997.

[21]L.X. Wnag, “Adaptive fuzzy systems and control:Design and stability analysis, ”Englewood Cliffs, NJ:prentice-Hall, 1994.

[22]Y.C. Chang, “Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and H-inf approaches, ”IEEE Trans. On Fuzzy systems, pp. 278-292, 2001.

[23]C.S. Chen and W.L. Chen, “Robust model reference adaptive control of nonlinear systems using fuzzy systems,” I.J. of systems science, pp. 1435-1442, 1996.

[24]C.Y. Su and Y. Stepanenko, “Adaptive control of a class of nonlinear systems with fuzzy logic,” IEEE Trans. On Fuzzy systems, Vol. 2, pp 285-294, 1994.

[25]S. Tong and H.X. Li, “Fuzzy adaptive sliding-mode control for MIMO nonlinear systems, ”IEEE Trans. On Fuzzy systems, Vol. 11, No. 3, pp. 354-360, 2003.

[26]C. Panchapakesan, M. Palaniswami,D. Ralph, and C.Manzie, “Effect- s of moving the centers in an rbf network,” IEEE Trans. On Neural Net- works, Vol. 13, No. 6, pp. 1299-1307, 2002.

[27]H. Han, C.Y. Su, and Y. Stepanenko, “Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximators,”IEEE Trans. On Fuzzy systems , Vol. 9, No. 2,pp. 315- 323, 2001.

[28]M. Maeda and S. Murakami, “A self-tuning fuzzy conroller,”Fuzzy Sets and Systems, Vol. 51, pp. 29-40, 1992.

[29]Y.M. Park, U.C. Moon, and K.Y. Lee, “A self-organizing fuzzy logic controller for dynamic systems using a fuzzy auto-regressive moving average (FARMA)model,”IEEE Trans.On Fuzzy systems, Vol. 3,No. 1, pp. 75-82, 1995.

[30]J.X. Xu and J. Xu, “A new fuzzy logic learning control scheme for repetitive trajectory tracking problems,”Fuzzy Sets and Systems, Vol. 133,pp. 57-75, 2003.

[31]L.Behera and K.K. Anand, “Guaranteed tracking and regulatory performance of nonlinear dynamic systems using fuzzy neural networks,”IEE Proc.-Control Theory Appl., Vol. 146, pp. 4884-491, 1999.

[32]C.J. Chien, “A sampled-data iterative learning control using fuzzy network design, “Internat. J. Control, Vol. 73, pp. 902-913, 2000.

[33]C.T. Lin and C.S.G. Lee, “Neural network-based fuzzy logic control and decision system,”IEEE Tans. Comput, Vol. 40, pp. 1320-1336, 1991.

[34]Seiji Yasunobu and Hiroaki Yamasaki, “EVolutionary Control Method and Swing Up and Stabilization Control of Inverted Pendulum,”IEEE Tans. pp. 2078-2083, 2001.

[35]Haihua Gao and Xingyu Wang, “Simulation Research on Extension Adaptive Control of Inverted Pendulum,”In Proc.IEEE 5th Wrold Congress on Intelligent Control and Automation. pp. 437-439, 2004.

[36]Hiroyuki INOUE, Kei MATSUO, Keita HATASE , Katsuari KAMEI, Mitsuru TSUKAMOTO and Kenji MIYASAKA, “A Fuzzy Classifier System Using Hyper-Cone Membership Functions and Its Application to Inverted Pendulum Control,” IEEE Trans. IEEE SMC .WA2D3, 2002.

[37]Stephane Dussy and Laurent El Ghaoui, “Robus Gain-Scheduled Control of a Class of Nonliear Parameter-Dependent System: Application to an Uncertain Inverted Pendulum,”IEEE International Conference on Control Applications. pp. 516-512, 1996.

[38]Jeng Hann Li ,Tzuu-Hseng S.Li , Meng-che Tsai and Sheng-Hsiung Lin, “Design and Implementation of Dynamic Weighted Fuzzy Sliding-Mode Controller for an FPGA-based Inverted Pendulum Car,” IEEE/ASME, Internation Conference on Advanced Intelligent Mechatr- onlcs, pp. 628-633, 2003.

[39]Akira Ohsumi and Takeya Izumikawa, “Nonlinear Control of Swing-up and Stabilization of an Inverted Pendulum,”Proceedings of the 34th Conference on Decision & Control , New Orleans,USA, pp. 3873-3880, 1995.

[40]Kazunobu Yoshida, “Swing-up control of an inverted pendulum by engery-based methods,”AACC,American Control Conference, pp. 4045 -4047, 1999.

[41]L.X Wang ,“A Course on Fuzzy Systems and Control”,New Jersey, Prentice Hall, pp. 105-106, 1997.

[42] C.C. Lee, “Fuzzy Logic in control system: Fuzzy logic controller, part I, Part II”,IEEE transactions on systems man cybernetics, Vol. 20, pp. 404-435, 1990.

[43]R. Yager and D. Filev, “SLIDE: A Simple Adaptive Defuzzification Method” IEEE Transactions On Fuzzy Systems 1, pp. 69-78, Feb 1993.

[44]D. Boixader,J. Jacas and J. Recasens, “Similarity-based approach to defuzzication.”Proceedings of FUZZ-IEEE ’97, pp. 761-764, 1997.

[45]V. Grisales and M. Melgarejo, “A defuzzification scheme suitable for digital hardware implementation”, 3rd WSEAS on fuzzy systems and fuzzy sets, February 2002.

[46]T.A. Runkler and M. Glesner, “A Set of Axioms for Defuzzifications Strategies. Towards a Theory of Rational Defuzzification Operators”, proceedings of the Second IEEE International Conference on Fuzzy Systems, pp 1161-1166, 1993.

[47]Jianqiang YI, Naoyoshi YUBAZAKI and Kaoru HIROTA,“Upswing and Stabilization Control of Inverted Pendulum and Cart System by the SIRMs Dynamically Connected Fuzzy Inference Model.”, IEEE Inter- naional Fuzzy systems Conference Proceedings, pp. 400-405, 1999.

[48]S. Yasunobu and M. Mori., “ Swing up Fuzzy Controller for Inverted Pendulum Based on a Human Control Strategy.”, Proceedings of FUZZ -IEEE’97, Vol. 3, Barcelona, Spain, pp. 265-268, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔