(3.235.245.219) 您好!臺灣時間:2021/05/10 01:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃裕家
研究生(外文):Yu-Chia Huang
論文名稱:考慮接頭變位之近斷層地下管線受震分析
論文名稱(外文):Seismic Analyses of Near-Field Underground Pipelines Considering Joint Deformation
指導教授:黃慶東黃慶東引用關係
指導教授(外文):Ching-Tung Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:95
中文關鍵詞:近斷層
外文關鍵詞:Near-Field
相關次數:
  • 被引用被引用:4
  • 點閱點閱:137
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是探討近斷層地下管線接頭變位之受震分析,並推導地下管線含接頭之有限元素矩陣公式,將固定端的邊界加以修正,用以模擬連續性地下管線,並求得邊界為連續之管線元素矩陣公式。分析時採用Haskell數學模式模擬斷層開裂運動,以提供地表受震運動之計算,並據以擬動力的角度分析地下管線於理想假設下之接頭最大變形量與管線最大應變之值,並採用三種分析方法做比較。研究成果顯示,以有限元素法與單一管線靜力分析法求出之管線最大接頭變形量以及管線最大應變之值相同;另一成果顯示,以地動參數PGV求取最大地表應變,在將其最大地表應變套入單一管線靜力分析法,所求出之接頭最大變形量與管線最大應變之值較保守,然在斷層兩端點處則此方法之計算結果偏不保守側。
The objective of this thesis is to investigate the seismic responses of near-field underground water pipes. In analysing the deformation responses, two element matrix methods are developed that respectively consider a fixed boundary condition and a continuous boundary condition. In addition, a PGV-based solution approach in conjuction with the above mentioned matrix methods are implemented for comparing the resulting joint deformation and pipe strain. The near-field ground motions are generated by using the Haskell model. Numerical results show that the PGV-based solution approach generally yield good solution accuracy in the near-field regions. However, the accuracy deteriates for those areas near the tips of both the fault ends where static deformation rather than the dynamic deformation dominates the solutions.
目錄
目錄 I
圖(表)目錄 III
第一章 緒論 1
1.1 研究背景與目的 1
1.2 文獻回顧 2
1.3 研究方法與內容 4
第二章 維生自來水管線接頭性質 8
2.1 前言 8
2.2 延性鑄鐵管與接頭接合配件型式 8
2.3 接頭構件材料 11
2.4 接頭型式 12
2.5 管線接頭勁度的簡化 15
2.6 管線接頭力學行為 16
2.7 自來水管線損壞之行為模式 17
第三章 連續管線含接頭之擬動力分析 19
3.1 前言 19
3.2 地下自來水管線靜力分析模式 19
3.3 地下自來水管線靜力分析模式與管線元素推導 22
3.4 地下管線系統含接頭之有限元素分析(邊界為固定端) 25
3.5 邊界為固定端之分析模式初步測試成果 28
3.6 邊界為連續之元素矩陣公式推導 29
3.7 管線元素間地表位移之探討 33
3.8 有限元素之近似解與Wang之正解初步比較 34
第四章 近斷層效應下地下管線之擬動力分析 36
4.1 前言 36
4.2 Haskell數學模式 36
4.3 Hashkell模式之一維數值計算 40
4.4 Haskell Model 之地表應變數值計算 43
4.5 Haskell Model 之PGV數值計算 44
4.6 Haskell Model 之地下管線受震分析方法 45
4.7 數值模擬結果與探討 46
4.8 結論 50
第五章 結論與建議 52
參考文獻 55
[1]Katayama, T.K., Kubo, K., and Sata, N. (1975), “Earthquake Damage to Water and Gas Distribution Systems”, Proceedings, U.S. National Conference on Earthquake Engineering, Ann Arbor, MI, pp. 396-405.
[2]O’Rourke, M. and Ayala G. (1993). “Pipeline damage due to wave propagation”, ASCE, Vol.119, No.GT9, pp.1491-1498.
[3]Toprak, S. (1998). “Earthquake Effects on Buried Lifelines Systems”, Ph. D., Cornell University.
[4]Tasi, J.S., Jou, L.D., and Lin, S.H. (2000). “Damage to Buried Water Supply Pipelines in the Chi-Chi Taiwan Earthquake and a Preliminary Evaluation of Seismic Resistance of Pipe Joints”, Journal of the Chinese Institute of Engineers, Vol.23, No.4, pp.395-408.
[5]陳峻維 (2001),「集集大地震中東勢、石岡、豐原之天然氣管線災損害分析」,國立台北科技大學土木與防災研究所碩士論文。
[6]王柏蘅 (2001),「集集大地震中埔里鎮之自來水管線災損分析」,國立台北科技大學土木與防災研究所碩士論文。
[7]曾世賢 (2001),「921集集地震污水管線災損之GIS震害分析」,國立台北科技大學土木與防災研究所碩士論文。
[8]N. M. Newmark, (1967), “Problems in Wave Propagation in Soil and Rock”, Proceedings of the International Symposium on Wave Propagation and Dynamic Properties of Earth Materials, Albuquerque, New Mexico, August 1967, pp. 7-26.
[9]ASCE TCLEE(1999), “Guideline for the seismic evaluation and upgrade of water transmission facilities”, Technical Council of lifeline earthquake engineering Monograph No.15.
[10]Shinozuka, M. and Koike, T. (1979), “Estimation of Structural Strains in Underground Lifeline Pipes”, Technical Report No. NSF-PFP-79-15049-CU-4, Department of Civil Engineering and Engineering Mechanics, Columbia University.
[11]Tamura, C. (1976), “Design of Underground Structures by Considering Ground Displacement during Earthquakes”, Proceedings of the U.S. Japan Seminar on Earthquake Engineering, Research with Emphasis on Lifeline Systems, Tokyo, Japan, pp.417-433.
[12]A. Sakurai and T. Takahashi, (1969), “Dynamic Stresses of Underground Pipelines During Earthquakes”, Proceeding of the Fourth World Conference on Earthquake Engineering, Santiago, Chile, pp. 150-162.
[13]黃郁翔,「地表震動變異性對埋置管線的影響」,國立中央大學土木工程學研究所碩士論文,羅俊雄教授指導, 民國七十八年六月
[14]H. H. Shah, and S. L. Chu, (1974), “Seismic Analysis of Underground Structural Elements”, Journal of the Power Division, ASCE, Vol. 100, NO. PO1, pp. 53-62.
[15]L. R. Wang, M. J. O’Rourke, and R. R. Pikul, “Seismic Vulnerability, Behavior and Design of Buried Pipelines”, Technical Report No.9, Department of Civil Engineering, Rensselaer Polytechnic Institute, Troy, New York, March 1979.
[16]L. N. H. Lee, T. Ariman, and C. C. Chen, (1980), “On Buckling of Buried Pipelines by Seismic Excitation”, Presented at the Pressure Vessel and Piping Conference, ASME, Paper No. 80-C2/PVP-75, San Francisco, California, August.
[17]H. D. Yun, and S. Kyriakides, (1984), “Buckling of a Heavy Beam on a Contacting Surface: A Mode for Beam Buckling of Buried Pipes”, Presented at the Pressure Vessels and Piping Conference and Exhibition, ASME, Paper No. 84-PVP-71, San Antonio, Texas, June.
[18]M. S. Tawfic, and T. D. O’Rourke, (1986), “Analysis of Pipelines Under Large Soil Deformations”, Report No. 86-1, School of Civil Engineering and Environmental Engineering, Cornell University Ithaca, New York, March.
[19]Elhmadi, K. and O’Rourke, M. J. (1989), ”Seismic wave propagation effects on straight jointed buried pipelines”, Technical Report NCEER-89-0022.
[20]Elhmadi, K. and O’Rourke, M. J. (1990), ”Seismic damage to segmented buried pipelines”, Engineering and Structural Dynamics, Vol. 19, No. 4, pp. 529-539.
[21]O’Rourke and Nordberg C. (1992), “Longitudinal permanent ground deformation effects on buried continuous pipelines”, Technical Report NCEER-92-0014.
[22]中國自來水協會,「自來水設施耐震設計指南及解說2002」,中華民國自來水協會,2002。
[23]中國國家標準,CNS10808延性鑄鐵管,1998。
[24]中國國家標準,CNS13272延性鑄鐵管,1993。
[25]Singhal, A. C.,”Nonlinear Behavior of Ductile Iron Pipeline Joints”,Journal of Technical Topics in Civil Engineering, Vol.110, No. 1, pp. 29~37, 1984.
[26]Singhal, A. C.,”Axial, Bending and Torsional Behavior of Pipelines”,Journal of Technical Topics in Civil Engineering, Vol.110, No. 1, pp. 38~47, 1984.
[27]Singhal, A. C.,”Behavior of Jointed Ductile Iron Pipelines”,Journal of Transportation Engineering, Vol.110, No. 2, pp. 235~250, 1984.
[28]日本國土開發技術研究—,「地下埋設管路耐震繼手技術基準(案)」,1977。
[29]日本延性鑄鐵管協會技術資料,地震 管路 (JDPAT 05)。
[30]蔡錦松,「自來水管線運用柔性接頭提升耐震性之研究」,中華民國自來水協會技術研究委員會,民國九十二年三月。
[31]李雨南,“近斷層地下管線耐震需求與地動參數關聯性之研究” ,國立台灣科技大學營建工程系碩士論文,民國九十三年七月。
[32]蔡錦松,「現有自來水管線(PVCP、DIP)接頭耐震檢測研究」,國立成功大學土木工程研究所,民國八十八年四月。
[33]Wang, L.R.L.,and O’Rourke , T.D. (1982). “Imposed ground strain and buried pipelines, “ASCE, Journal of Technical Councils, Vol. 108, TC2.
[34]N. A. Haskell, (1964), “Total Energy and Energy Spectral Density of Elastic Wave Radiation from Propagating Faults”, Bulletin Seism. Soc. America, 54(6), 1811-1841.
[35]N. A. Haskell, (1969), “Elastic Displacements in the Near-Field of a Propagating Fault”, Bulletin Seism, Soc. America, 59(2), 865-908.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔