(100.26.179.251) 您好!臺灣時間:2021/04/14 07:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊宗憲
研究生(外文):Tsung-Hsien Yang
論文名稱:以緩衝層提升可撓式有機發光二極體發光效率之研究
論文名稱(外文):The study of improving luminance efficiency by the insertion of buffer layers in flexible organic light-emitting diodes
指導教授:莊賦祥
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:90
中文關鍵詞:non
外文關鍵詞:non
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用PEDOT:PSS、Teflon、TPD in CHCl3與α-NPD in CHCl3作為可撓式有機光二極體之陽極緩衝層,除Teflon之外,皆使用旋轉塗佈的製程方式將緩衝層沈積於ITO基板上,目的在於降低ITO表面之粗糙度並改善有機材料之附著性,以提升可撓式有機光二極體之發光效率與可撓曲性。在以PEDOT:PSS作為緩衝層之研究中,元件結構為:ITO/PEDOT:PSS/NPB (40 nm)/Alq3 (60 nm) /LiF/Al,研究結果顯示,當PEDOT:PSS厚度為20 nm時,與無緩衝層之元件相比,最大發光效率可由2.0 cd/A提升至3.75 cd/A。若將PEDOT:PSS厚度增至80 nm時,元件發光效率可再提升至4.75 cd/A,最大亮度為1600 cd/m^2 @ 10 V。之後若再將Alq3厚度增加為100 nm並於PEDOT:PSS上蒸鍍1 nm之Teflon,由於激子放光效率增加,因此元件最大亮度可提升至2040 cd/m^2 @ 10 V,最大發光效率可穩定維持 ≧ 6.0 cd/A @ 1.0 ~ 27.4 mA/cm^2。而在以TPD in CHCl3作為緩衝層之研究中,元件結構為:ITO/TPD in CHCl3/NPB/Alq3/LiF/Al,研究結果顯示,當TPD in CHCl3、NPB、Alq3厚度分別為35、20、80 nm時,元件之發光效率提升至4 cd/A 以上、亮度為2000 cd/m^2 @ 8.5V。若以α-NPD in CHCl3取代TPD in CHCl3作為緩衝層,當α-NPD in CHCl3厚度為55 nm,NPB與Alq3厚度為20、80 nm時,元件亮度為1220 cd/m^2 @ 7.5 V,發光效率可穩定維持在5.0 cd/A。若於α-NPD in CHCl3上再蒸鍍1 nm之Teflon,NPB與Alq3厚度不變,則元件發光效率可提升至6.5 cd/A,最大亮度為1200 cd/m^2。
In order to improve the luminance efficiency and flexibility of the flexible organic light-emitting diodes (FOLEDs), four kinds of buffer layer were inserted between ITO and hole transport layer in the device of ITO/buffer/NPB (40 nm)/Alq3 (60 nm)/LiF/Al. The buffer layer employed is PEDOT:PSS, PEDOT:PSS/Teflon, TPD or α-NPD . The TPD and α-NPD were first solved in chloroform (CHCl3) before spin-coating.
Firstly, when 20 nm PEDOT:PSS was employed as buffer layer, the FOLED luminance efficiency increased from 2 to 3.75 cd/A in comparison with the original device without any buffer layer. If PEDOT:PSS thickness increases from 20 to 80 nm, the luminance efficiency increased to be about 4.75 cd/A and the maximum luminance was 1600 cd/m^2 @ 10V. Next, 1 nm Teflon was further coated on the PEDOT:PSS surface, i.e. PEDOT:PSS/Teflon as the buffer layer. The effects of PEDOT:PSS thickness in the PEDOT:PSS/Teflon buffer layers on the FOLEDs were also studied. Finally, when the Alq3 thickness was increased from 60 to 100 nm in the FOLEDs using PEDOT:PSS/Teflon as the buffer layers, the maximum luminance and efficiency were increased to as high as 2040 cd/m^2 and 6.1 cd/A, respectively. Next, the effects of TPD in CHCl3 as buffer layer were studied. The spin-coated TPD in CHCl3 film has better adhesion to both ITO and NPB material, which can improve the luminance efficiency of flexible OLED. When 35 nm TPD in CHCl3 was employed as buffer layer, the thickness of NPB and Alq3 with 20 and 80 nm. The maximum luminance and efficiency can be increased to as high as 2000 cd/m^2 and 4.0 cd/A, respectively. Finally, we used α-NPD in CHCl3 to replace TPD in CHCl3 as buffer layer and the thickness fixed at 55 nm. The luminance efficiency increased to be about 5.0 cd/A and the maximum luminance was 1220 cd/m^2 @ 25 mA/cm^2. If 1 nm Teflon was further coated on the α-NPD in CHCl3 surface, the maximum luminance efficiency can be increased to as high as 6.5 cd/A and the maximum luminance was 1200 cd/m^2.
中文摘要 ………………………………………………………………… i
英文摘要 ………………………………………………………………… ii
致 謝 ………………………………………………………………… iii
表 目 錄 ………………………………………………………………… vi
圖 目 錄 ………………………………………………………………… vii
第 一 章 緒論…………………………………………………………… 1
1.1 有機發光二極體發展概述…………………………………… 1
1.2 有機發光二極體發光原理…………………………………… 3
1.3 螢光與磷光簡述……………………………………………… 6
1.4 空間電荷限制電流…………………………………………… 8
1.5 發光效率之定義……………………………………………… 8
1.6 有機發光二極體發光結構…………………………………… 12
1.7 有機發光二極體材料………………………………………… 13
1.8 有機發光二極體效率提升方式……………………………… 17
1.9 研究動機……………………………………………………… 18
第 二 章 實驗方法……………………………………………………… 20
2.1 塑膠基板參數………………………………………………… 20
2.2 ITO塑膠基板陽極電極圖案化與基板清洗方法…………… 20
2.3 元件所使用之料材…………………………………………… 22
2.4 緩衝層薄膜沉積……………………………………………… 24
2.5 蒸鍍設備……………………………………………………… 25
2.6 有機薄膜層與金屬薄膜層之蒸鍍…………………………… 25
2.7 元件封裝……………………………………………………… 28
2.8 各材料之升溫曲線與沉積速率……………………………… 28
2.9 量測儀器……………………………………………………… 29
第 三 章 結果與討論…………………………………………………… 31
3.1 塗佈轉速對PEDOT:PSS particle之影響…………………… 31
3.2 以PEDOT:PSS作為緩衝層來提升可撓式有機發光二極體發光
效率之研究…………………………………………………… 31
3.3 以TPD in CHCl3作為緩衝層來提升可撓式有機發光二極體
發光效率之研究……………………………………………… 38
3.4 以α-NPD in CHCl3作為緩衝層來提升可撓式有機發光二極
體發光效率之研究…………………………………………… 42
3.5 可撓式有機發光二極體封裝技術之研究…………………… 46
第 四 章 結論…………………………………………………………… 49
附 錄 Flexible OLED Photo………………………………………… 88
參考文獻 ………………………………………………………………… 89
[1] M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
[2] D. F. Williams, M. Schadt, Proc. IEEE., 58, 476 (1970).
[3] W. Helfrich, W. G. Schneider, Phys. Rev. Lett., 14, 229 (1965).
[4] D. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Robert, Thin Solid Films,
94, 17 (1982).
[5] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
[6] J. H. Burroughs, D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H.
Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539 (1990).
[7] A. A. Shoustikov, Y. You, and M. E. Thompson, IEEE Journal on Selected
Topics in Quantum Electronics. 4, 3, (1998)
[8] S. G. Schulman, Fluorescence and Phosphorescence Spectroscopy:Physico
chemical Principles and Practice, Pergamon Press, Oxford (1995).
[9] R. W. Smith and A. Rose, Phys. Rev., 97, 1531 (1955).
[10] C. W. Tang, Appl. Phys. Lett., 48, 183 (1985).
[11] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys., 27,
L713 (1988).
[12] M. Era, C. Adachi. T. Tsutsui, and S. Saito, Chem. Phys. Lett., 178, 488
(1991).
[13] J. Kido, M. Kohda, K. Okuyama, and K. Nagai, Science, 267, 1332 (1995).
[14] 徐玉娟, Science Monthly, 2, 123 (2001).
[15] T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, J. H. Burroughes,
and F. Cacialli, Appl. Phys. Lett., 79, 174 (2001).
[16] R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, S. Walker, M.
Inbasekaran,and E. P. Woo, Synth. Met., 111-112, 151 (2000).
[17] L. C. Palilis, D. G. Lidzey, M. Redecker, D. D. C. Bradley, M.
Inbasekaran,E. P. Woo, and W. W. Wu, Synth. Met., 111-112, 159 (2000).
[18] M. K. Fung, S. L. Lai, S. W. Tong, M. Y. Chan, C. S. Lee and S. T. Lee,
Appl. Phys. Lett., 81, 1497 (2002).
[19] F. Zhu, B. Low, K. Zhang, and S. Chua, Appl. Phys. Lett., 79, 1205 (2001).
[20] W. L. Yu, J. Pei, Y. Cao, and W. Huang, J. Appl. Phys., 89, 2343 (2001).
[21] S. A. Carter, M. Angelopoulous, S. Karg, P. J. Brock, and J. C. Scott,
Appl. Phys. Lett., 70, 2067 (1997).
[22] J. C. Scott, S. A. Carter, S. Karg, and M. Angelopoulous, Synth. Met.,
85, 1197 (1997).
[23] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J.
Feast, Appl. Phys. Lett., 75, 1679 (1999).
[24] Q. Pei, G. Zuccarello, M. Ahlskog, and O. Imganäs, Polmer, 35, 1347
(1994).
[25] L. A. A. Pettersson, T. Johansson, F. Carlsson, H. Arwin, and O. Imganäs,
Synth. Met., 101, 198 (1999).
[26] K. Z. Xing, M. Fahlman, X. W. Chen, O. Imganäs, and W. R. Salaneck,
Synth. Met., 89, 161 (1997).
[27] F. Jonas and J. T. Morrison, Synth. Met., 85, 1397 (1997).
[28] W. Bantikassegn and O. Imganäs, Thin Solid Films, 293, 138 (1997).
[29] R. Kiebooms, A. Aleshin, K. Hutchison, F. Wudl, and A. Heeger, Synth.
Met., 101, 436 (1999).
[30] Y. Gao, L. Wang, D. Zhang, L. Duan, G. Dong, and Y. Qiu, Appl. Phys.
Lett., 82, 155 (2003).
[31] F. S. Juang, S. C. Chang, C. Y. Su and Y. F. Chen, Jpn. J. Appl. Phys.,
44, 2837 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔