(3.236.6.6) 您好!臺灣時間:2021/04/22 19:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳誌賢
研究生(外文):Chih-Hsien Chen
論文名稱:微元件考慮顆粒與液體之表面力對界面微接觸性能的影響及其應用在表面形貌之評估與選用
論文名稱(外文):The Effects of Surface Forces on Contact Characteristics and the Topographical Evaluation of Microparts in Considering of Particle and Liquid Film
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:動力機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:125
相關次數:
  • 被引用被引用:3
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在微機電元件中,慣性力隨著元件本身之重量急遽減少而降低,以致兩元件間表面波峰尖端之表面力對界面性能有顯著影響,尤其在表面粗糙度降低至奈米等級時更顯現其對微機電元件界面性能的重要性。其中間隙、磨擦與磨損的控制是微運動元件最關心的難題。在微機械或精密機械具有相對運動之接觸表面間,實際上常存有不同外來粒子、磨屑或液體膜等,因此本文建立一個界面存有顆粒、液體及表面具有粗糙度的三體微接觸黏附模式,以了解顆粒及液體表面效應在兩接觸界面間對接觸特性的影響。過去表面和表面及表面和顆粒兩種不同的黏附力模式,可利用此三體黏附力模式簡化得到。
本文亦利用此新模式推導可預測微元件之黏附磨擦與砂磨磨損之公式,以同時考慮材料、顆粒大小、負荷、試件表面粗度與表面能對脫離力、真實接觸面積、磨擦力、平衡間隙、黏附力與毛細力的影響。結果顯示微機件界面間之間隙與力量控制,除了在極小表面能或極污染表面外,深受黏附力影響,有時需用外力壓近兩相對表面,有時需要拉離相對表面方可達到微機件需要之適當間隙。本文亦設計製造不同表面粗糙度之表面,探討其加工表面形貌對微元件之真實接觸面積、黏附力及毛細力的影響效應,以取得較佳之表面形貌,提供專業參考選用。此表面粗度、表面能、顆粒大小、間隙、磨擦與磨損六者之相互關係可由本文之分析得知,因此本文理論分析結果與實作表面可作為各項微機件製造與設計之參考。
In the microelectromechanical system (MEMS), inertial force is reduced as the weight of the component reduces rapidly. Surface forces occurs at the peaks of the asperities on interface and is pronounced when the surface roughness effect is small, due to the nanometer level. In the MEMS and precision machine, particles and liquid films are often presented at contact interfaces. In this paper, a three-body adhesion model for rough surfaces with particles and liquid films are proposed in order to understand the effects of particles and liquid films between surfaces on contact characteristics. Both transitional surface-to-surface and particle-to-surface two-body microcontact adhesion model simulations can be obtained according to the simplification of this model.
The new adhesion model was also used to analysis the friction and wear between rough surface in MEMS and precision machine. The effects of surface roughness, material, lead, particle size, surface energy of surface and particles on pull-off force, friction coefficient, equilibrium gap, real contact area, wear and capillary force investigated. Moreover, in order to design the optimal surface, the effects of adhesion and capillary force of surface micromaching on the real contact area of microparts are investigated. It is shown that the separation and the applied load between the interfaces of microparts were considerably affected by the adhesion, except under small surface energy or contaminated surfaces. The results show that, in some cases, it needs external force to close the opposite surface or external load was needed to separate it to reach the appropriate separation in other cases. The relationship between surface roughness, particle size, surface energy, separation, friction and wear between the contacting surfaces can be obtained in this paper. The analytical results particle manufacture surface can to be a base for manufactory and design of microparts.
摘要(中文)............................................................... i
摘要(英文)............................................................... ii
誌謝..................................................................... iii
目錄..................................................................... iv
表目錄...................................................................vii
圖目錄...................................................................viii
符號說明.................................................................xi
第一章 緒論
1.1 前言................................................................. 1
1.2 微接觸理論文獻回顧................................................... 3
1.3 黏附力文獻回顧....................................................... 5
1.4 考慮黏附力之微接觸理論文獻回顧....................................... 6
1.5 毛細力理論文獻回顧................................................... 7
1.6 研究動機與論文架構................................................... 8
第二章 未考慮表面力之微接觸理論分析
2.1 前言.............. .................................................. 11
2.2 相對試件之統計接觸分析............................................... 11
2.3 顆粒與試件及上、下試件兩者之接觸分析................................. 13
2.3.1 顆粒與相對試件三者接觸均完全塑性變形............................... 13
2.3.2 顆粒與上、下試件接觸均彈性變形..................................... 16
a.單一顆粒與試件之接觸分析............................................... 16
b.界面間顆粒與試件之統計接觸分析......................................... 19
c.考慮顆粒效應之試件間接理論分析......................................... 20
d.上試件波峰與顆粒的平均及最大接觸負荷................................... 23
2.3.3 顆粒與其中一試件為完全塑性變形與另一試件為彈性變形................. 24
a.單一顆粒與試件之接觸分析............................................... 24
b.界面顆粒與工件之統計接觸分析........................................... 25
c.作用在下試件與上試件接觸間的顆粒效應................................... 26
d.研磨粒、研磨墊及工件與外加負荷之力平衡................................. 27
e.下試件波峰與顆粒的平均及最大接觸負荷................................... 28
第三章 考慮表面力三體接觸理論及磨擦與磨損分析
3.1 前言................................................................. 31
3.2 顆粒與上、下試件之黏附力分析......................................... 31
3.2.1上試件與下試件接觸黏附力分析........................................ 31
3.2.2顆粒與下試件接觸黏附力分析.......................................... 33
3.2.3顆粒與上試件接觸黏附力分析.......................................... 33
3.3 顆粒與上、下試件之毛細力分析......................................... 35
3.4 顆粒之砂磨磨損分析................................................... 39
3.5 顆粒與上、下試件之黏附磨擦分析....................................... 41
第四章 實驗與理論分析驗證
4.1前言.................................................................. 50
4.2真實接觸面積實驗台.................................................... 50
4.3試驗試件.............................................................. 50
4.4粗度儀量測系統........................................................ 51
4.5實驗驗證.............................................................. 51
4.6理論驗證.............................................................. 51
第五章 理論分析之結果與討論
5.1 力量-間隙平衡點...................................................... 55
5.2 脫離力............................................................... 58
5.3 接觸變形負荷比....................................................... 59
5.4 實際接觸面積......................................................... 61
5.5毛細力................................................................ 62
5.6黏附磨擦與砂磨磨損.................................................... 63
第六章 微表面形貌之加工、評估與選用
6.1 前言................................................................. 89
6.2 實驗之加工方式說明................................................... 89
6.3 奈米測試儀(Nano teat)簡介............................................ 90
6.4 原子力顯微鏡(AFM)簡介................................................ 91
6.5 實驗與評估說明....................................................... 92
第七章 結論與建議........................................................ 94
參考文獻................................................................. 97
[1] 徐國財, 張立德, 2002, 納米複合材料, 化學工業出版.
[2] Pashley, M. D., Pethica, J. B., and Tabor, D., 1980, “Adhesion and Micromechanical Properties of Metal Surfaces,” Wear, Vol.100, pp.7-13.
[3] Chowdhury, S. K. and Gbosh, P., 1994, “Adhesion and Adhesional Friction at the Contact Between Solids,” Wear, Vol.174, pp.9-19.
[4] Greenwood, J. A., 1997, “Adhesion of Elastic Spheres,” Proc. Roy. Soc. London, A453, pp. 1277-1297.
[5] Johnson, K. L. and Greenwood, J. A., 1997, “An Adhesion Map for the Contact of Elastic Spheres,” Journal of Colloid and Interface Science, Vol. 192, pp. 326-333.
[6] Blau, P. J., 1992, ASME Tribology handbook, The Materials Information Society.
[7] Li, J., Cui, Z. and Baker, M. A., 2004, “A Study of the Surface Chemistry, Morphology and Wear of Silicon Based MEMS,” Surface and Interface Analysis, Vol. 36, No. 8, pp. 1254-1258.
[8] Bhushan, B. and Huiwen L., 2004, “Micro/Nanoscale Tribological and Mechanical Characterization for MEMS/NEMS,” Proceedings of SPIE-The International Society for Optical Engineering, Vol. 5343, pp. 194-206.
[9] Bhushan, B., 2005, “Nanotribology and Nanomechanics,” Wear, Vol. 259, No. 7-12, pp. 1507-1531.
[10] Tadao, T. and Kazuyuki, S., 1981, “A three-dimension measuring Technique for surface asperities.” Wear, Vol.71, pp. 1-14.
[11] Hiller, B. and Brown B., 1992, “Interaction of individual alumina panicles with the head-disk interface at various velocities,” Adv. Infor. Storage Syst. ASME, Vol.5, pp. 351-361.
[12] Lu, L., 1995, “Formation of Wear Particles in Polishing of Brittle Solids and Grinding of Metals,” Ph.D. thesis. School of industrial Engineering, Purdue University, West Lafayette, IN47907-1287.
[13] Ahn, Y., 1992, “Deformation About Sliding Indentation in Ceramics and Its Application to Lapping,” Ph.D. thesis. School of Industrial Engineering, Purdue University, West Lafayette, IN47907-1287.
[14] Wang, L. Y., Sullivan, M. and Chao, J, 2001, “Thermal Asperties Sensitivity to Particles: Methodology and Test Results,” ASME Journal of Tribology, Vol. 123, pp. 376-379.
[15] Zhang, L., Koka, R., Yuen, Y. and Lam, E., 1999, “Particle induced damage on heads and discs due to fine particles of different materials,” IEEE Trans on Magnetics, Vol.35, pp.927-932.
[16] Sawatzky, E., 1998, “Thermal asperites: MR heads face new dangers,” Data Storage, Vol. 5, pp. 49-54.
[17] Bell, E. G. and Gosline, J. M., 1996, Journal of Experimental Biology, pp. 1005-1017.
[18] Chen, Y. L. and Chou, J. Y., 1993, “Selection of anti-caking agents throuogh crys-tallization,” Powder Technology, Vol. 77, pp. 1-6.
[19] Rabinovich, Yakov I., Adler, Joshua J., Esayanur, Madhavan S., Ata, Ali, Singh, Rajiv K. and Moudgil, Brij M., 2002, “Capillary forces between surfaces with nanoscale roughness,” Advances in Colloid and Interface Science, Vol. 96, No. 1-3, pp. 213-230.
[20] Kikuchi, N. and Oden, J. T., 1988, Contact Problems in Elasticity., SIAM Press.
[21] Greenwood, J. A. and Williamson, J. B. P., 1966, "Contact of Nominal Flat Surface," Proc. R. Soc. London, Ser. A., A295, pp.300-319.
[22] Pullen, J. and Williamson, J. B. P., 1972, “On the Plastic Contact of Rough Surface,” Proc. R. Soc. London, A327, pp. 157-173.
[23] Chang, W. R., Etsion, I. and Bogy, D. B., 1987, “An Elastic-Plastic Model for the Contact of Rough Surface,” ASME Journal of Tribology, Vol. 110, pp. 50-56.
[24] Zhao, Y., McCool, D. and Cheng, L., 2000, “An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow,” ASME Journal of Tribology, Vol. 122, pp. 86-93.
[25] Johnson, K. L., 1985, Contact Mechanics., Cambridge University Press.
[26] Abbott, E. J. and Firestone, F. A., 1933, “Specifying Surface Quality-A Method Based on Accurate Measurement and Comparison,” Institution of Mechanical Engineers, Vol. 55, pp. 569.
[27] Kogut, L. and Etsion, I., 2002, “Elastic-plastic contact analysis of a sphere and a rigid flat,” ASME Journal of Applied Mechanics, Vol. 69, No. 5, pp. 657-662.
[28] McCool, J., 1986, “Predicting Microfracture of Ceramics Via Microcontact Model ,” ASME Journal of Tribology, Vol. 108, pp. 380-386.
[29] O’Callaghan, M. and Cameron, M. A., 1976, “Static Contact Under Load Between Nominally Flat Surface in Which Deformation is Purely Elastic,” Wear, Vol. 45, pp. 79-97.
[30] Hisakado, T., 1974, “Effects of Surface Roughness on Contact Between Solid Surfaces,” Wear, Vol. 28, pp. 217-234.
[31] Horng, J. H., 1998, “An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surface,” ASME Journal of Tribology, Vol. 120, pp. 82-88.
[32] Horng, J. H. and Chen, Y. C., 2005, “Tribological Properties of particles between Piston Ring and Cylinder Liner,” 精密機械與製造技術研討會, 屏東墾丁福華大飯店, A329, pp.754-760.
[33] Horng, J. H. and Chen, Y. C., 2005, “Three-Baby Microcontact Model and It`s Application on Wear,” accepted.
[34] Davis, Shawn P., Landis, Benjamin J., Adams, Zachary H., Allen, Mark G. and Prausnitz, Mark R., 2004, “Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force,” Journal of Biomechanics, Vol. 37, No. 8, pp. 1155-1163.
[35] Biggs, S. and Spinks, G., 1998, “Atomic Force Microscopy Investigation of the Adhesion between a Single Polymer Sphere and a Flat Surface,” J. Adhes. Sci. Technol., Vol. 12, No. 5, pp. 461-478.
[36] Reitsma, M., Craig, V. and Biggs S., 2000, “Elasto-Plastic and Visco-Elastic Deformations of a Polymer Sphere Measured using Colloid Probe and Scanning Electron Microscopy,” J. Adhe. Adhes., Vol. 20, No. 6, pp. 445-448.
[37] Derjaguin, B. V., Muller, V. M. and Toporov, Y. P., 1975, “Effect of Conact Deformation on the Adhesion of Elastic Solids,” J. Colloidal Interface Sci., Vol. 53, pp. 314-326.
[38] Johnson, K. J., Kendall, K. and Roberts, A. D., 1971, “Surface Energy and the Contact of Elastic Solids,” Proc. R. Soc. Lond., A324, pp.301-313.
[39] Tabor, D., 1977, “Surface Forces and Surface Interactions,” J. Colloidal Interface Sci., Vol. 538, pp. 2-13.
[40] Muller, V. M., Yushchenko, V. S. and Derjaguin, B. V., 1980, “On the influence of Molecular Forces on the Deformation of an Elastic Sphere and its Sticking to Rigid Plane,” J. Colloidal Interface Sci., Vol. 77, pp. 91-101.
[41] Chang, W. R., Etsion, I. and Bogy, D. B., 1988, “Adhesion Model for Metallic Rough Surfaces,” ASME Journal of Tribology, Vol. 110, pp. 50-56.
[42] Maugis, D., 1996, “On the Contact and Adhesion of Rough Surfaces,” J. Adhesion Sci. and Tech., Vol. 10, pp. 161-175.
[43] Aral, F., Ando, D. and Fukuda, T. 1996, “Adhesion Force Reduction for Micro Manipulation Base o n Micro Physic”, Proc,IEEE/RJS Int. Conf. On Intelligent Robotics and Systems, pp. 354-359.
[44] Sahoo, P. and Roy Chowdhury, S. K., 2000, “A fractal analysis of Adhesion Friction between Rough Solids in Gentle Sliding,” Poc. Instn. Mech. Engrs., Vol. 214, Part J, pp. 583-594.
[45] Sahoo, P. and Roy Chowdhury, S. K., 2002, “A fractal analysis of Adhesive Wear at the Contact between Rough Solids,” Wear, Vol. 253, pp. 924-934.
[46] Pollock, H. M. and Skinner, J., 1978, “ Contact Adhesion and Interfacial Energy: A New Technique,” IEEE Transactions on Nuclear Science, Vol. 1, pp. 529-532.
[47] Maugis, D., Pollock, H. M., 1984, “Surface Forces, Deformation and Adherence at Metal Microcontacts,” Acta Metall., Vol. 32, No. 9, pp. 1323-1334.
[48] Pethica, J. B. and Tabor D., 1982, “Characterized Metal Microcontacts,” Journal of Adhesion, Vol. 13, No. 3-4, pp. 215-228.
[49] Roy Chowdhury S. K. and Pollock H. M., 1981, “Adhesion Engergies at a Metal Interface: the Effects of Surface Treatments and Ion Implantation,” Wear, Vol. 13, No. 9, pp. 1761-1784.
[50] Chang, W. R., Etsion, I. and Bogy, D. B, 1987, “Elastic-Plastic Model for the Contact of Rough Surfaces,” ASME Journal of Tribology, Vol. 109, No. 2, pp. 257-263.
[51] Mesarovic, S. D. and Johnson K. L., 2000, “Adhesive Contact of Elastic-Plastic Spheres,” J. Mech. Phys. Solids, Vol. 48, No. 10, pp. 2009-2033.
[52] Mukherjee, S., Ali, S. M. and Sahoo, P., 2004, “An improved elastic-plastic contact model of rough surfaces in the presence of adhesion,” Journal of Engineering Tribology, Vol. 218, pp. 557-567.
[53] Skinner, L. M. and Sambles, J. R., 1972, Aerosol Sci., Vol. 3, pp. 199.
[54] Israelachvili, J. N. and Fisher, L. R. and Christenson, H. K., 1982, ‘‘Messurement of Adhesion and Short-Range Forces Between Molecularly Smooth Surfaces in Undersaturated Vapours and in Organic Liquids,’’ J. Colloid Interface Sci., pp. 55-69.
[55] Fisher, L. R., Gamble, R. A. and Middlehurst, J., 1981, Nature, Vol. 290, pp. 575.
[56] Melrose, J. C., 1989, ‘‘Scaling procedures for capillary pressure data at low wetting-phase saturations,’’ Langmuir, Vol. 5, pp. 241-250.
[57] Pietsch, W. and Rumpf, H., 1967, Chemie-Ing., Techn., Vol. 39, pp. 885.
[58] Coelho, M. C. and Harnby, N., 1978, ‘‘Effect of Humidity on the from of Water Retention in a Power,’’ Powder Technology, Vol. 20, No. 2, pp. 197-200.
[59] Coelho, M. C. and Harnby, N., 1978, ‘‘Moisture Bond in Ginpowers,’’ Powder Technology, Vol. 20, No. 2, pp. 201-205.
[60] Fisher, L. R. and Israelachvili, J. N., 1981, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 3, pp. 303.
[61] Marmur, A., 1993, ‘‘Tip-Surface Capillary Interactions,’’ Langmuir, Vol. 9, No. 7, pp. 1922-1926.
[62] De Lazzer, A., Dreyer, M. and Rath, H. J., 1999, ‘‘Particle-Surface Capillary Forces,’’ Langmuir, Vol. 15, No. 13, pp. 4551-4559.
[63] Sirghi, L., Nakagiri, N., Sugisaki, K., Sugimura, H. and Takai, O., 2000, ‘‘Effect of Sample Topography on Adhesive Force in Atomic Force Spectroscopy Measurements in Air,’’ Langmuir, Vol. 16, No. 20, pp. 7796-7800.
[64] Quon, R. A., Ulman, A. and Vanderlick, T. K., 2000, ‘‘Impact of Humidity on Adhesion Between Rough Surfaces,’’ Langmuir, Vol. 16, No. 23, pp. 8912-8916.
[65] Rabinovich, Y. I., Adler, J. J., Esayanur, M. S., Ata, A., Singh, R. K. and Moudgil, B. M., 2002, “Capillary forces between surfaces with nanoscale roughness,” Advances in Colloid and Interface Science, Vol. 96, No. 1-3, pp. 213-230.
[66] Lee, S. C. and Polycarpou, A. A., 2004, “Adhesion Forces for Sub-10nm Flying-Height Magnetic Storage Head Disk Interfaces,” ASME Journal of Tribology, Vol. 126, pp. 334-341.
[67] Komanduri, R., Chandrasekaran, N. and Raff, L. M., 2003, “Molecular dynamic simulations of uniaxial tension at nanoscale of semiconductor materials for micro-electro-mechanical systems (MEMS) applications,”Materials Science and Engineering A, Vol. 340, No. 1, pp. 58-67.
[68] Gates, J. D., 1998, “Two-Body and Three-Body Abrasion: A Critical Discussion,” Wear, Vol. 214, pp. 139-146.
[69] Dwyer-Joyce, R. S., Sayles, R. S. and Loannides, E., 1994, “An Investigation Into The Mechanisms of Closed Three-Body Abrasive Wear,” Wear, Vol. 175, pp. 133-142.
[70] Trezona, R. I., Allsopp, D. H. and Hutchings, I. M., 1999, “Transitions Between Two-Body and Three-Body Abrasive Wear: Influence of Test Conditions in The Microscale Abrasive Wear Test,” Wear, Vol.225-229, pp. 205-214.
[71] Stachowiak, G. B. and Stachowiak, G. W., 2001, “The Effects of Particle Characteristics on Three-Body Abrasive Wear,” Wear, Vol. 249, pp. 201-207.
[72] Xie, Y. and Bhushan, B., 1996, “Effects of Particle Size, Polishing Pad and Contact Pressure in Free Abrasive Polishing,” Wear, Vol. 200, pp. 281-295.
[73] Stachowiak, G. B. and Stachowiak, G. W., 2001, “The Effects of Particle Characteristics on Three-Body Abrasive Wear,” Wear, Vol. 249, pp. 201-207.
[74] Muller, V. M., Derjaguin, B. V., and Toporov, Y. P., 1983, “On Two Methods of Calculation of the Force of Sticking of an Elastic Spher to Rigig Plane,” Colloids and Surface, Vol. 7, pp. 251-259.
[75] Adamson, A. W., 1967, Physical Chemistry of Surfaces, 2nd ed., Interscience Publishers, New York.
[76] Xie, Y. and Williams, A. J., 1993, “The Generation of Worn Surfaces by the Repeated Interaction of Parallel Grooves,” Wear, Vol. 162-164, pp. 864-872.
[77] Xie, Y. and Williams, A. J., 1996, “The Prediction of Friction and Wear When a Soft Surface Slides Against a Harder Rough Surface,” Wear, Vol. 196, pp. 21-34.
[78] Rabinowicz, E., 1995, “Friction and Wear of Materials,” 2nd Edition, Wiley, New York.
[79] Green, A. P., 1995a, “Friction between Unlubricated Metals: A Theoretical Analysis of the Junction Model,” Proceedings of the Royal Society of Londen A., Vol. 228, pp. 191-204.
[80] Green, A. P., 1955b, “The Plastic Yieiding of Metal Junction due to Combined Shear and Pressure,” Journal of the Mechanics and Physics and Solids, Vol. 2, pp. 197-211.
[81] Rabinowicz, E., 1965, “Friction and Wear of Materials,” Wiley, New York.
[82] Archard, J. F., 1953, “Contact and Rubbing of Flat Surface,” Journal of Appiled Physics, Vol. 24, pp. 981-988.
[83] Hurtado, J. and Kim, K. S., 1999, ‘‘Scale Effect in Friction of Single-Asperity Contacts. I. From Concurrent Slip to Single- Dislocation-Assisted Slip. II. Multiple-Dislocations-Cooperated Slip,’’ Proc. R. Soc. London, Ser. A, 455, pp. 3363-3400.
[84] Bhushan, B. and Nosonovsky, M., 2003, ‘‘Scale Effects in Friction Using Strain Gradient Plasticity and Dislocation-Assisted Sliding (Microslip),’’ Acta Mater., Vol. 51, pp. 4331-4345.
[85] Bhushan, B. and Nosonovsky, M., 2004, ‘‘Comprehensive Model for Scale Effects in Friction Due to Adhesion and Two- and Three-Body Deformation (Plowing),’’ Acta Mater., Vol. 52, pp. 2461-2474.
[86] Hirai, A. and Itoh, K. M., 2004, “Site selective growth of Ge quantum dots on AFM-patterned Si substrates,” Physica E: Low-Dimensional Systems and Nanostructures, Vol. 23, No. 3-4, pp. 248-252.
[87] Suh, N. P., Sin, H. C., Tohka,i M. and Saka, N., 1980, “Surface Topography and Functional Requirements for Dry Sliding Surface,” CIRP Annals ,International Institution for Production Engineering Research. , Vol. 29, pp. 413-418.
[88] Bhushan, B., and Nosonovsky, M., 2004, ‘‘Scale Effects in Dry and Wet Friction, Wear, and Interface Temperature,’’ Nanotechnology, Vol. 15, pp. 749-761.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔