[1] Zhi-Hua Zhou,"Three perspectives of data mining (book review)", Artificial Intelligence,143(1),pp. 139–146, January 2003.
[2] Chris Clifton and Bhavani Thuraisingham,"Emerging Standards for Data Mining", Computer Standards and Interfaces ,23(3), pp. 187–193, July 2001.
[3] D.M. Amidon, "Blueprint for 21st century innovation management", Journal of Knowledge Management ,2(1), pp. 23–31 ,1998.
[4] H. Holtz, Databased Marketing — Every Manager’s Guide to the Super Marketing Tool of the 21st Century, Wiley, New York, 1992.
[5] M.C. Rumizen, "Report on the second comparative study of knowledge creation conference", Journal of Knowledge Management ,2(1), pp.77–82, September 1998.
[6] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.
[7] L. Breiman, et al. , Classification and Regression Trees, Chapman &. Hall (Wadsworth, Inc.), New York, 1984.
[8] Michael J. A. Berry, and G. Linoff, Data Mining Techniques: For Marketing,Sales, and Customer Support , John Wiley & Sons, Inc., New York, 1997.
[9] Hosking,et al. ,"A statistical perspective on data mining", Future Generation Computer Systems, 13(2-3), pp. 117-134, November 1997.
[10] M. C. Lovell,"Data Mining" , The Review of Economics and Statistics , LXV(1), pp. 1–12, February 1983.
[11] M. Holsheimer, and A.P.J.M. Siebes, Data Mining: the search for knowledge in databases, CWI (Centre for Mathematics and Computer Science), Amsterdam, 1994.
[12] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining, MIT Press, Menlo Park, CA, 1996.
[13] J. Han and M. Kamber, Data Mining : Concepts and Techniques,Morgan Kaufmann Pub,San Francisco,2000.
[14] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining ,MIT Press, Cambridge, CA, 2001.
[15] I.H. Witten, and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, San Francisco, CA, 2000.
[16] H. A. Edelstein, Introduction to data mining and knowledge discovery (3rd ed) , Two Crows Corp.,Potomac, MD,1999.
[17] http://www.moneydj.com/z/glossary/glexp_4670.asp.htm
[18] http://www.uniminer.com/center01.htm
[19] M. J. Shaw, C. Subramaniam, G. W. Tan, and M. E. Welge, "Knowledge Management and Data Mining for Marketing", Decision Support Systems, 31(1), pp.127-137, May 2001.
[20] J.R. Quilan, "Induction of decision trees", Machine Learning, 1,pp. 81-106, November 1986.
[21] K. Alsabti, S. Ranka, and V. Singh, "An Efficient K-Means Clustering Algorithm", PPS/SPDP Workshop on High performance Data Mining, pp. 34-39,March 1998.
[22] L. Kaufman and P. J. Rousseuw, Finding Groups in Data: an Introduction to Cluster Analysis , John Wiley & Sons, NY, 1990.
[23] R. T. Ng and J. Han, "Efficient and Effective Clustering Methods for Spatial Data Mining", Proc. of the 20th Int’l Conf. on Very Large Databases, pp. 144-155, Santiago, Chile, 1994.
[24] W.S. McCulloch and W. Pitts, "Artificial Neural Network",Bull. Math. Biophys ,5, pp.115-133. 1943.
[25] D. Hebb, The Organization of Behavior, John Wiley, New York,1949.
[26] P. J. Werbos, "Backpropagation and neurocontrol:A review and prospectus" IJCNN,1,pp. 209-216, March 1989.
[27] RP. Li, ZO. Wang, "Mining classification rules using rough sets and neural networks", EUROPEAN JOURNAL OF OPERATIONAL RESEARCH ,157 (2), pp.439-448,September 2004.
[28] H. Lu, R. Setiono, H. Liu,"Effective data mining using neural networks", IEEE Transactions on Knowledge and Data Engineering ,8(6),pp. 957–961, December 1996.
[29] M. Craven, J. Shavlik, "Using neural networks for data mining", Future Generation Computer Systems ,13(2-3),pp. 211–229, October 1997.
[30] J. H Holland, "Outline for A Logical Theory of Adaptive Systems", Journal of the Association for Computing Machinery, 9(3),pp. 297-314, July 1962.
[31] D. A. Koonce, and S.-C. Tsai, "Using Data Mining to Find Patterns in Genetic Algorithm Solutions to a Job Shop Schedule",Computers & Industrial Engineering, 38, pp.361-374,2000.
[32] K.F. Man,K.S. Tang,and S. Kwong,"Genetic Algorithms:Concepts and Applications",IEEE Transactions on Industrial Electronic,43(5),pp.519-533, 1996.
[33] P.D. Scott, and E. Wilkins, "Evaluating data mining procedures: Techniques for generating artificial data sets", Information and Software Technology , 41,pp.579-587, 1999.
[34] W.Seifert Jeffrey, "Data Mining and the Search for Security:Challenges for Conneting the Dots and Databases", Government Information Quarterly, 21( 4), pp.461‐480,2004.
[35] J. M. Donato, J. C. Schryver, Gregory C. Hinkel, Richard L. Schmoyer, Jr., Micheal R. Leuze, and Nancy W. Grandy, "Mining multi-dimensional data for decision support", Future Generation Computer Systems, 15(3),pp. 433-441, 1999.
[36] A.J. Feelders, H.A.M. Daniels and M. Holsheimer," Methodological and practical aspects of data mining", Information & Management ,37(5), pp. 271-281, 2000.
[37] Wai-Ho Au, and Keith C.C. Chan, "Mining changes in association rules: a fuzzy approach", Fuzzy Sets and Systems ,149(1), pp. 87-104,January 2005.
[38] F. Crespo, R. Weber," A methodology for dynamic data mining based on fuzzy clustering", Fuzzy Sets and Systems ,150(2), pp.267-284,2005.
[39] F. Masseglia, P. Poncelet, and M. Teisseire," Incremental Mining of Sequential Patterns in Large Databases", Data and Knowledge Eng., 46(1), pp. 97-121, July 2003.
[40] U. Fayyad, D. Madigan, G. Piatetsky-Shapiro,and P. Smyth, "From data mining to knowledge discovery in databases", AI Magazine ,17(3), pp. 37-54 ,1996.
[41] E. Yilmaz, E. Triantaphyllou, J. Chen, and TW Liao, "Heuristic for Mining Association Rules In Polynomial Time" ,Computer and Mathematical Modelling,37,pp. 219-233,2003.
[42] Ji-Han Jiang, Chin-Chen Chang, and Tung-Shou Chen, "A Compact Sparse Matrix Representation Using Random Hash Functions", Data & Knowledge Engineering, 32, pp. 29-49, 2000.
[43] T. Calders, and J. Paredaens, "Axiomatization of frequent sets", In Proceedings of the 8th International Conference on Database Theory , pp. 204-218 , London, UK, January 2001.
[44] Mitsunori Ogihara,"Data Mining for Studying Large Databases", Xerox, Webster, NY, February 12, 2004.
[45] A. Kitada, T. Murai and Y. Sato, "A Data Structure for Dynamic Data Mining", Third International Conference. on. Knowledge-Based Intelligent Information Engineeing Systems, pp. 530 -533, Adelaide, Australia ,September 1999.
[46]呂永和,賴瓊惠,劉佳灝,吳素英,「以布林演算基礎的多階層序列型樣探勘技術」,第七屆人工智慧與應用研討會(TAAI2002),p279,朝陽科技大學,臺灣,民國91年11月15日。
[47]李建億,潘冠良,吳政道,「運用矩陣運算策略來提昇關聯法則探勘效能之研究」,2001中華民國第九屆模糊理論及其應用會議,國立中央大學,臺灣,民國90年11月23-24日。
[48]何俊輝,蔡崇煒,楊竹星,莊嘉育,「應用資料採礦及演化式計算概念於數位學習路徑分析」,第三屆數位典藏技術研討會,中央研究院資訊科學研究所,臺灣,民國93年8月5-6日。
[49]陳銘宗,「組合式關聯法則應用於缺值問題之研究」,朝陽科技大學,碩士論文,民國92年。[50]馬南超,「一種三向度時間序列資料處理模型」,私立中原大學,碩士論文,民國92年。[51]陳垂呈,「應用布林運算快速分群化交易項目」,台灣區域網際網路研討會,嘉義中正大學,民國90年10月24-26日。
[52]蔡旻璇,「序列樣式分析應用於課程規劃支援系統」,靜宜大學,碩士論文,民國91年。[53]顏博文,「應用資料探勘技術分析學生選課特性與學業表現」,中原大學,碩士論文,民國92年。[54]謝育勳,「員工知識管理資訊系統之設計與發展—資料採擷技術之應用」,國立中央大學,碩士論文,民國89年。[55]楊淦淼,「設計建立在多層式服務架構上的資料挖掘系統—以學生課程管理為例」,逢甲大學,碩士論文,民國91年。[56]楊琇媛,「利用資料倉儲與資料探勘技術於招生筞略與學生特質分析之研究」,中原大學,碩士論文,民國91年。[57]邱永祥,「運用類神經網路與資料探勘技術於網路教學課程推薦之研究」,朝陽科技大學,碩士論文,民國92年。[58]何達明,「排序對關聯演算法速度的影響」,中原大學,碩士論文,民國91年。[59]沈明賢,「差異性顯示對關聯法則使用之評估」,元智大學,碩士論文,民國90年。[60]陸津華,「挖掘高獲利性關聯規則之研究」,東海大學,碩士論文,民國92年。[61]武家慶,「適用於挖掘多層次聯結規則的架構」,逢甲大學,碩士論文,民國90年。[62]楊文昇,「有效率的挖掘關聯法則之高頻物項集合演算法」,逢甲大學碩士論文,民國90年。[63]許振華,「從限定項目個數及交易長度的資料中有效地找出關聯規則之研究」,逢甲大學,碩士論文,民國91年。[64]陳銘宗,「組合式關聯法則應用於缺值問題之研究」,朝陽科技大學,碩士論文,民國92年。
[65]李文傑,「企業知識發掘架構透過資料庫關聯規則探勘」,朝陽科技大學,碩士論文,民國92年。[66]楊昇宏,「資料挖掘應用於找尋瀏覽網頁之型樣」,逢甲大學,碩士論文,民國89年。[67] R. Agrawal, T. Imielinski and A. Swami, "Mining Association Rules between Sets of Items in Large Database", Proc. of the ACM SIGMOD Int''l Conf. on Management of Data, pp. 207-216, New York, May 1993.
[68] R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association Rules in Large Databases", Proc. of the 20th International Conference on Very Large Database, pp. 487-499, Santiago, Chile, September 1994.
[69] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu, "Using a Hash-Based Method with Transaction Trimming and Database Scan Reduction for Mining Association Rules", IEEE Trans. On Knowledge and Data Engineering, 95, pp. 813-825, October 1997.
[70] S.J. Yen and Arbee L.P. Chen, "An Efficient Approach to Discovering Knowledge from Large Databases", In Proc. of 4th Int. Conf. on Parallel and Distributed Information Systems, pp. 8-18, Miami Beach, Florida, USA, December 1996.
[71] S.Y. Wur and Y. Leu, "An Effective Boolean Algorithm for Mining Association Rules in Large Databases", Proc. of the 6th Int. Conf. on Database Systems for Advanced Applications, pp. 179-186, Hsinchu, Taiwan,April 1999.
[72] Weiyang Lin, "Association Rule Mining for Collaborative Recommender Systems", WORCESTER POLYTECHNIC INSTITUTE, Thesis of Master, May 2000。
[73] A. Savasere, E. Omiecinski and S. Navathe. "An Efficient Algorithm for Mining Association Rules in Large Databases", Proceedings of the 21st International Conference on Very Large Databases, pp. 432-444, Zurich, Switzerland , September 1995.
[74] B. Lent, A. Swami and J. Widom. "Clustering Association Rules", Proceedings of the 13th International Conference on Data Engineering. pp. 220-231, Birmingham, UK ,April 1997.
[75] J.S. Park, M.S. Chen, and P.S. Yu. "An Effective Hash Based Algorithm for Mining Association Rules ", Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, pp. 175-186, San Jose, California, May 1995.
[76] Jun-Lin Lin and Margaret H. Dunham. "Mining Association Rules: Anti-Skew Algorithms",Proc. of 1998 Int''l Conf. on Data Engineering, pp. 486-493, Orlando, Florida, USA, February 1998.
[77] M.J. Zaki, "Scalable algorithms for association mining,", IEEE Transactions on Knowledge and Data Engineering, 12(3),pp. 372 -390 , May-June 2000.
[78] A.B. Tickle, R. Andrews, M. Golea, and J. Diederich, "The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks", IEEE Trans. Neural Networks ,9 (6),pp.1057–1068, 1998.
[79] I. Geist,"A Framework for Data Mining and KDD" ,In: The 2002 ACM SIGAPP Symposium on Applied Computing (SAC), pp. 508 – 513,Madrid, Spain, March 2002.
[80] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth ,"The KDD process for extracting useful knowledge from volumes of data", Commun ACM , 39(11), pp.27–41, November 1996.
[81] C. Glymour, D. Madigan, D. Pregibon, and P. Smyth, "Statistical themes and lessons for data mining", Data Mining and Knowledge Discovery ,1(1), pp. 11-28, 1997.
[82] M. Holsheimer, A. Siebes, "Data Mining: The Search for Knowledge in Databases, Technical Report", CS-R9406, CWI, 1994.
[83] W . Frawley, G . Piatetsky-Shapiro, and C. Matheus," Knowledge discovery in databases: an overview", AAAI/MIT Press, pp.1-30, Menlo Park, CA, 1991.