(18.232.50.137) 您好!臺灣時間:2021/05/07 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳詩揚
研究生(外文):Shi-Yang Chen
論文名稱:雷射感應破裂光譜法分析鎳基合金中鋁、鈦、錳、鐵、矽以及銅基合金中鉛和錫
論文名稱(外文):Analysis of Al, Ti, Mn, Fe, Si in nickel-based alloys and Pb, Sn in copper-based alloys by laser-induced breakdown spectrometry
指導教授:蔡素珍蔡素珍引用關係
指導教授(外文):Suh-Jen Jane Tsai
學位類別:博士
校院名稱:靜宜大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005/07/
畢業學年度:93
語文別:中文
論文頁數:175
中文關鍵詞:合金雷射感應破裂光譜法雷射原子放射光譜學
外文關鍵詞:Atomic Emission spectroscopyLaserAlloyLIBS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用雷射感應破裂光譜法(laser induced breakdown spectroscopy, LIBS)分析鎳基合金與銅基合金,雷射感應破裂光譜法具有不需樣品前處理且多元素同時偵測的優點,論文內容主要包含三個主題:
第一個主題為利用時間積分空間解析雷射感應破裂光譜法(time-integrated spatially resolved laser-induced breakdown spectrometry, TISRLIBS)偵測鎳基合金中之鋁、鈦、錳與鐵元素,研究中探討雷射波長、氣體種類與訊號擷取參數對於訊號對背景比值(signal to background ratio)的影響。依實驗所得最佳條件進行偵測,可得線性關係良好的校正曲線,與文獻比較,本研究中鋁、鈦、錳具有較低的偵測極限。
第二個主題我們建立了一個以空間解析雷射感應破裂光譜法(spatially resolved laser induced breakdown spectroscopy, SRLIBS)偵測固體樣品的方法。實驗結果證明,透過空間解析法可避免電漿初期的背景放射與離子光譜干擾。在本研究偵測條件(Nd-YAG laser at 532nm, 3 mJ laser energy and 0.2 mbar in Ar)下,鋁與矽元素的最佳觀察距離各別為3 mm與 9 mm。SRLIBS可提供與TISRLIBS相同的精密度和準確度。
第三個主題利用SRLIBS同時偵測銅基合金中之鉛與錫元素,研究中探討氣體壓力對放射訊號的影響,在0.5 – 10 mbar範圍內,發現7.5 mbar可獲得最大放射訊號。研究中以銅基合金標準品製作校正曲線,並測定銅基合金SRM 1110中鉛與錫含量,偵測結果與確認值之間誤差小於 4 %,且無基質或光譜干擾。使用SRLIBS可節省尋找最佳訊號擷取參數的時間且不損失偵測結果的精密度與準確度。
Nickel-based alloys and copper-based alloy haved been analyzed with laser-induced breakdown spectroscopy (LIBS). The main advantages of LIBS are simple, rapid, no pretreatment is required, possibility of simultaneous multi-element analysis. The thesis includes three major parts:
In the first part, the time-integrated spatially resolved laser-induced breakdown spectrometry (TISRLIBS) was applied to simultaneously detect Al, Ti, Mn and Fe in nickel-based alloys. The effects of pressure, ambient gas, laser wavelength, and gated parameters on the signal-to background ratio (S/B ratio) had been studied. There were good linear relation between atomic emission intensity and element content in nickel-based alloy with the optimized condition in this work. Detection limits of Al, Ti, Mn were lower than relevant work in the literature.
In the second part, a method for direct solid sample analysis with spatially resolved laser-induced breakdown spectroscopy (SRLIBS) was established. In the non-gated SRLIBS, the continuum and ion emission interference could be eliminated with optimum observation spatial position. The study was done with a Nd-YAG laser at 532nm, 3 mJ laser energy, and 0.2 mbar in Argon. Under such experimental condition, the optimum observation distances for aluminum and silica were 3 and 9 mm, respectively. The SRLIBS could provide comparable accuracy and precision as those obtained with TISRLIBS.
In the third part, SRLIBS was applied to simultaneously detect Pb and Sn in copper-based alloys. The effect of ambient argon pressure from 1.0 to 10 mbar was investigated. The maximum emission was obtained at 7.5 mbar. Pb and Sn in a copper-based alloy SRM 1110 standard was measured from the calibration curves established with alloy standards. Relative errors between experimental results obtained by SRLIB and certified values of Pb and Sn in SRM 1110 were less than 4 %. No significant matrix or spectral interferences from copper matrix was observed under this experimental condition. Using SRLIBS could avoid the tedious time-consuming steps of the optimization of delay time and gate width without sacrificing the accuracy or precision.
目錄 ------------------------------------------------------------------------ I
謝誌 ------------------------------------------------------------------------ V
中文摘要 ------------------------------------------------------------------- VI
英文摘要 ----------------------------------------------------------------- VIII
表目錄 ---------------------------------------------------------------------- X
圖目錄 ------------------------------------------------------------------- XIII
第一章 序論 ---------------------------------------------------------------- 1
第一節LIBS原理--------------------------------------------------------------- 5
一、雷射剝蝕 ------------------------------------------------------------- 5
二、雷射感應電漿 -------------------------------------------------------- 10
第二節 LIBS應用上的限制 ---------------------------------------------------- 13
第三節 光譜分析技術 -------------------------------------------------------- 14
一、時間解析雷射感應破裂光譜法(TRLIBS) ---------------------------------- 14
二、時間積分空間解析雷射感應破裂光譜法(TISRLIBS) ------------------------ 14
三、無閘式雷射感應破裂光譜法(non-gated LIBS) ---------------------------- 15
第四節 固體分析上的應用 ---------------------------------------------------- 18
一、LIBS特性之研究 ------------------------------------------------------ 18
二、金屬分析 ------------------------------------------------------------ 21
三、非金屬分析 ---------------------------------------------------------- 21
四、太空探測 ------------------------------------------------------------ 22
第五節 參考文獻 ------------------------------------------------------------ 23
第二章 儀器裝置與數據擷取 ------------------------------------------------- 30
第一節 實驗裝置 ------------------------------------------------------------ 30
第二節 數據擷取 ------------------------------------------------------------ 30
第三節 雷射系統 ------------------------------------------------------------ 34
第四節 樣品室 -------------------------------------------------------------- 37
第五節 移動平台 ------------------------------------------------------------ 37
第六節 真空系統 ------------------------------------------------------------ 41
第七節 延遲產生器 ---------------------------------------------------------- 41
第八節 偵測系統 ------------------------------------------------------------ 41
第九節 研磨拋光機 ---------------------------------------------------------- 42
第十節 其他 ---------------------------------------------------------------- 42
第十一節 參考文獻 ---------------------------------------------------------- 44
第三章 利用時間積分空間解析雷射感應破裂光譜法偵測鎳基合金中之錳與鈦元素 ---- 45
第一節 前言 ---------------------------------------------------------------- 45
第二節 研究目的 ------------------------------------------------------------ 47
第三節 實驗 ---------------------------------------------------------------- 47
第四節 結果與討論 ---------------------------------------------------------- 50
一、光譜分析 ------------------------------------------------------------ 50
二、氣體種類與壓力------------------------------------------------------- 50
三、雷射波長 ------------------------------------------------------------ 59
四、訊號擷取參數 -------------------------------------------------------- 62
五、觀察距離 ------------------------------------------------------------ 64
六、訊號累加次數 -------------------------------------------------------- 64
七、定量分析 ------------------------------------------------------------ 69
第五節 結論 ---------------------------------------------------------------- 78
第六節 參考文獻 ------------------------------------------------------------ 79
第四章 利用空間解析雷射感應破裂光譜法偵測鎳基合金中之鋁與矽元素 ------------ 84
第一節 前言 ---------------------------------------------------------------- 84
第二節 研究目的 ------------------------------------------------------------ 86
第三節 實驗 ---------------------------------------------------------------- 87
第四節 結果與討論 ---------------------------------------------------------- 92
一、電漿放射光譜隨時間與空間之變化--------------------------------------- 92
二、電漿的激發溫度(excitation temperature)的分佈------------------------- 92
三、觀察距離對空間解析雷射感應破裂光譜法的影響 --------------------------102
四、SRLIBS 與TISRLIBS的比較 -------------------------------------------- 106
第五節 結論 --------------------------------------------------------------- 115
第六節 參考文獻 ----------------------------------------------------------- 116
第五章 利用空間解析雷射感應破裂光譜法偵測銅基合金中之鉛與錫元素 ---------- 120
第一節 前言 --------------------------------------------------------------- 120
第二節 研究目的 ----------------------------------------------------------- 122
第三節 實驗 --------------------------------------------------------------- 123
第四節 結果與討論 --------------------------------------------------------- 126
一、光譜分析 ----------------------------------------------------------- 126
二、壓力改變對電子密度的影響-------------------------------------------- 126
三、壓力改變對激發溫度的影響-------------------------------------------- 131
四、壓力對電漿膨脹的影響------------------------------------------------ 135
五、壓力對訊號強度的影響-------------------------------------------------135
六、定量分析-------------------------------------------------------------140
第五節 結論 --------------------------------------------------------------- 148
第六節 參考文獻 ----------------------------------------------------------- 149
附錄 ---------------------------------------------------------------------- 153
一、雷射系統校準程序---------------------------------------------------- 153
二、合金磨光步驟-------------------------------------------------------- 157
三、鎳基合金標準品成分表------------------------------------------------ 158
四、波茲曼作圖法-------------------------------------------------------- 160
五、銅基合金標準品成分表------------------------------------------------ 163
個人簡歷 ------------------------------------------------------------------ 164
個人著作目錄 -------------------------------------------------------------- 165
Chapter 1
1.E.A. Loria, “Recent developments in the progress of superalloy 718” JOM, 1992, 43, 33.
2.Y.L. Shabtay, M. Ainali, A. Lea, “New brazing processes using anneal-resistant copper and brass alloys”, Materials and Design, 2004, 25, 83.
3.J. Sneddon, “Advances in atomic spectroscopy”, Elsevier, 2002.
4.R.K. Singh, D. Kumar, “Pulsed laser deposition and characterization of high-Tc YBa2Cu3O7-x superconducting thin films”, Mate. Sci. Eng., 1998, R22, 113.
5.R.E. Russo, “Laser ablation”, Appl. Spectrosc., 1995, 49(9), 14A.
6.C.D. Allemand, “Spectroscopy of signal-spike laser-generated plasma”, Spectrochim. Acta, 1972, 27B, 185.
7.W.T. Silfvast, O.R. Wood, “Comparison of radiation from laser-produced and dc-heated plasmas in xenon”, Appl. Phys. Lett., 1974, 25, 274.
8.J.M. Green, W.T. Silfvast, O.R. Wood, “Evolution of a CO2-laser produced cadmium plasma”, J. Appl. Phys., 1977, 48, 2753.
9.K. Kagawa, S. Yokoi, “Application of the N2 laser to laser microprobe spectrochemical analysis”, Spectrochim. Acta, 1982, 37B, 789.
10.H. Kurniawan, Y. Ishikawa, S. Nakajima, K. Kagawa, “Characteristics of the secondary plasma induced by focusing a 10-mJ XeCl laser pulse at low pressures”, Appl. Spectrosc., 1997, 51, 1769.
11.L.J. Radziemski, “Review of selected analytical applications of laser plasma and laser ablation, 1987-1994”, Microchem. J., 1994, 50, 218.
12.J. Sneddon, T.L. Thiem, Y.I. Lee, “Lasers in analytical atomic spectroscopy”, VCH, 1996.
13.A.S. Eppler, D.A. Cremers, D.D. Hickmott, M.J. Ferris, A.C. Koskelo., “Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy”, Appl. Spectrosc., 1996, 50, 1175
14.V. Bulatov, R. Krasniker, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by combined multifiber spatial and temporal resolutions”, Anal. Chem., 1998, 70, 5302.
15.R. Krasniker, V, Bulatov, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by shock wave propagation”, Spectrochim. Acta, 2001, 56B, 609.
16.M.A. Ismail, H. Imam, A. Elhassan, W.T. Youniss, M.A. Harith, “LIBS limit of detection and plasma parameters of some elements in two different metallic matrices”, J. Anal. At. Spectrom, 2004, 19, 489.
17.M. Sabsabi, P. Cielo, “Quantitative analysis of copper alloys by laser-produced plasma spectrometry”, J. Anal. Atom. Spectrom., 1995, 10, 643.
18.J.Y. Yun, R. Klenze, J.I. Kim, “Laser-induced breakdown spectroscopy for the on-line multielement analysis of highly radioactive glass melt. Multielement analysis of highly radioactive glass melt. Part I: Characterization and evaluation of the method”, Appl. Spectrosc., 2002, 56, 437.
19.K.J. Grant, G.L Paul, J.A. O`Neill, “Electron temperature and density profiles of excimer laser-induced plasmas”, Appl. Spectrosc., 1990, 44, 1349.
20.K. Meissner , T. Lippert , A. Wokaun, D. Guenther, “Analysis of trace metals in comparison of laser-induced breakdown spectroscopy with LA-ICP-MS”, Thin Solid Films., 2004, 453-454, 316.
21.B.L. Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthlemy, T.W. Johnston, S. Laville, F. Vidal, Y.V. Kaenel. “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys”, Spectrochim. Acta, 2001, 56B, 987.
22.T.R. Loree, L.J. Radziemski, “Laser-induced breakdown spectroscopy: Time-integrated application”, Plasma Chem. Plasma Process., 1981, 1, 271.
23.K.J. Grant, G.L Paul, J.A. O''Neill, “Time-resolved laser-induced breakdown spectroscopy of iron ore”, Appl. Spectrosc., 1990, 44, 1711.
24.K.J. Grant, G.L. Paul, J.A. O''Neill, “Quantitative elemental analysis of iron ore by laser-induced breakdown spectroscopy”, Appl. Spectrosc., 1991, 45, 701.
25.V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet”, Appl. Spectrosc., 2000, 54, 1275.
26.G.W. Rieger, M. Taschuk, Y.Y. Tsui, R. Fedosjevs, “Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses”, Appl. Spectrosc., 2002, 56, 689.
27.K. Kagawa, M. Ohtani, S.Yokoi, S. Nakajima, “Characteristics of the plasma induced by the bombardment of N2 laser pulse at low pressure”, Spectrochim. Acta, 1984, 39B, 525.
28.Y.I. Lee, S.P. Sawan, T.L Thiem, Y.Y. Teng, J. Sneddon, “Interaction of a laser beam with metals. Part II: Space-resolved studies of laser-ablated plasma emission”, J. Appl. Spectrosc. 1992, 46, 436.
29.Y.I. Lee, T.L Thiem, G.H. Kim, Y.Y. Tenh; Sneddon, “Interaction of an excimer-laser beam with metals. Part III: The effect of a controlled atmosphere in laser-ablated plasma emission”, J. Appl. Spectrosc. 1992, 46, 1597.
30.E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy:a review of the experimental approaches” Spectrochim. Acta, 2002, 57B, 1115.
31.L. Niu, H.H. Cho, K.S. Song, H. Cha, Y. Kim, Y.I. Lee, “Direct determination of strontium in marine algae samples by laser-induced breakdown spectrometry”, Appl. Spectrosc., 2002, 56, 1512.
32.W.S. Budi, H. Suyanto, H. Kurniawan, M.O. Tjia, K. Kagawa, “Shock excitation and cooling stage in the laser plasma induced by a Q-switched Nd:YAG laser at low pressures”, Appl. Spectrosc., 1999, 53, 719.
33.X.L Mao, M.A. Shannon, A.J. Fernandez, R.E. Russo, “Temperature and emission spatial profiles of laser-induced plasmas during ablation using time-integrated emission spectroscopy”, Appl. Spectrosc. 1995, 49, 1054.
34.D.E. Kim, K.J. Yoo, H.K. Park, K.J. Oh, D.W. Kim, “Quantitative analysis of aluminum impurities in zinc alloy by laser-induced breakdown spectroscopy”, Appl. Spectrosc., 1997, 51, 22.
35.K.L. Eland, D.N. Stratis, D.M. Gold, S.R. Goode, S.M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation”, Appl. Spectrosc., 2001, 55, 286.
36.B.L. Drogoff, M. Chaker, J.M. Margot, M. Sabsabi, O. Barthelemy, T.W. Johnston, S. Laville, F. Vidal, “Influence of the laser plse duration on spectrochemical analysis of solids by lasers-induced plasma spectroscopy”, Appl. Spectrosc., 2004, 58, 122.
37.V. Bulatov, R. Krasniker, I. Schechter, “Converting spatial to pseudotemporal resolution in laser plasma analysis by simultaneous multifiber spectroscopy”, Anal. Chem., 2000, 72, 2987.
38.S. Yalin, Y.Y. Tsui, R. Fedosejevs, “Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy”, J. Anal. At. Spectrom., 2004, 19, 1295.
39.D. Moreau, O. Albert, R. Benzerga, C.B. Leborgne, E. Millon, J. Perriere, J. Etchepare, “Spectroscopic measurement of plume emission from femtosecond laser ablation”, Thin Solid Films., 2004, 453-454, 340.
40.P. Stavropoulosa,b, C. Palagasc, G.N. Angelopoulosc, D.N. Papamantellosc, S.b. Courisa, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers”, Spectrochim. Acta, 2004, 59B, 1885.
41.V. Majidi, M.R. Joseph, “Spectroscopic applications of laser-induced plasmas”, Crit. Rev. Anal. Chem, 1992, 23, 143.
42.D.A. Rusak, B.C. Castle, B.W. Smith, J.D. Wiefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy”, Crit. Rev. Anal. Chem, 1997, 27, 257.
43.K. Song, Y.L. Lee, J. Sneddon, “Application of laser-induced breakdown spectrometry”, Appl. Spectrosc. Rev., 1997, 32, 183.
44.I. Schechter, “Laser induced plasma spectroscopy. A review of recent advances”, Crit. Rev. Anal. Chem, 1997, 16, 173.
45.L.J. Rasziemski, “From LASER to LIBS, the path of technology development”, Spectrochim. Acta, 2002, 57B, 1109.
46.E.H. Evans, J.B. Dawson, A. Fisher, W.J. Price, C.M.M. Smith, J.F. Tyson, “Advances in atomic emission, absorption and fluorescence spectrometry and related techniques”, J. Anal. At. Spectrom., 2002, 17, 622.
47.N.H. Bings, A. Bogaerts, J.A.C. Broekaert, “Atomic spectroscopy” Anal. Chem., 2004, 76, 3313.
48.J.M. Vadillo, J.J. Laserna, “Laser-induced plasma spectrometry: truly a surface analytical tool”, Spectrochim. Acta, 2004, 59B, 147.
49.J.D. Winefordner, I.B. Gornushkin, T. Correll, E. Gibb, B.W. Smith, N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star”, J. Anal. At. Specreom., 2004, 19, 1061.
50.J.B. Sirven, B. Bousquet, L. Canioni, L. Sarger, “Time-resolved and time-integrated single-shot laser-induced plasma experiments using nanosecond and femtosecond laser pulses”, Spectrochim. Acta, 2004, 59B, 1033.
51.D. Zhang, D. Liy, Z. Li, S. Hou, B. Yu, L. Guan, X. Tan, L. Li, “A new model of pulsed laser ablation and plasma shielding”, Physica B, 2005, 362, 82.
52.D.J.O. Orzi, G.M. Bilmes, “Identificaton and measurement of dirt composition of manufactured steel plates using laser-induced breakdown spectroscopy”, Appl. Spectrosc., 2004, 58, 1475.
53.P.L. Garcia, J.M. Vadillo, J.J. Laserna, “Real-time monitoring of high- temperature correction in stainless steels by open-path laser-induced plasma spectroscopy”, Appl. Spectrosc., 2004, 58, 1347.
54.I.V. Cravetchi, M. Taschuk, Y.Y. Tsui, R. Fedosejevs, “Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy”, Spectrochim. Acta, 2004, 59B, 1439.
55.V. Lazic, R. Fantoni, F. Colao, A, Santagata, A. Morone, V. Spizzichino, “Quantitative laser induced breakdown spectroscopy analysis of ancient marbles and correction for the variability of plasma parameters and ablation rate”, J. Anal. At. Spectrom., 2004, 19, 429.
56.K. Kagawa, N. Idris, M. Wada, H. Kurniawan, K. Tsuyuki, S. Miura, “Carbon analysis for inspecting carbonation of concrete using a TEA CO2 laser-induced plasma”, Appl. Spectrosc., 2004, 58, 887.
57.G. Liu, D.J. Toncichb, E.C. Harveyb, F. Yuanc, “Diagnostic technique for laser micromachining of multi-layer thin films”, Int. J. Mach. Tools Manuf., 2005, 45, 583.
58.Z.A. Arp, D.A. Cremers, R.C. Wiens, D.M. Wayne, B. Salle, S. Maurice, “Analysis of water ice and water ice-soil mixtures using laser-induced breakdown spectroscopy: application to mars polar exploration”, Appl. Spectrosc., 2004, 58, 897.
59.Z.A. Arp, D.A. Cremersb, R.D. Harrisa, D.M. Oschwaldc, G.R. Parker, D.M. Waynea, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission”, Spectrochim. Acta, 2004, 59B, 987.
60.B. Salle´, J.L. Lacoura, E. Vorsa, P. Ficheta, S. Mauriceb, D.A. Cremersc, R.C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements”, Spectrochimi. Acta, 2004, 59B, 1413.
61.L. Radziemski, D.A. Cremers, K.Benelli, C. Khoo, R.D. Harris, “ Use of the vacuum ultraviolet spectra region for laser-induced breakdown spectroscopy-based Martian geology and exploration”, Spectrochim. Acta, 2005, 60B, 237.

Chapter 2
1.Manual provided by of Continuum Ltd.
2.孫昀孜, “利用電熱式原子吸收光譜法和雷射感應電漿破裂光譜法測定鎳基超合金”, 宜大學應用化學系博士論文, 2003.

Chapter 3
1.D.S. Anderson, B.D. Craig, “2nd edition handbook of corrosion data”, ASM International, 1995.
2.S.M. Hasany, A.A. Khan, H. Rehman, “Measurement of titanium and molybdenum in special steels and alloys using wavelength dispersive X-ray fluorescence spectrometry”, J. Radioanal. Nucl. Chem., 1998, 232, 195.
3.D.N. Papadopoulou, G.A. Zachariadis, A.N. Anthemidis, N.C. Tsirliganis, J.A. Anthemidis, “Microwave-assisted versus conventional decomposition procedures applied to a ceramic potsherd standard reference material by inductively coupled plasma atomic emission spectrometry”, Anal. Chim. Acta, 2004, 505, 173.
4.P. Tianyou, J. Zucheng, Q. Yongchao, “Slurry sampling of silicon nitride powder combined with fluorination assisted electrothermal vaporization for direct determination of titanium, yttrium and aluminum by ICP-AES”, J. Anal. At. Spectrom., 1999, 14, 1049.
5.D.M. Golta, G. Kostic, G. Reinfelds, “Rapid dissolution of metal in aqueous media using a modified commercial spark source unit”, Talanta, 2000, 52, 1131.
6.C.H. Chiu, Y.H. Sung, S.K. Huaung, “Simultaneous determination of manganese, iron and cobalt in copper with a multi-element graphite furnace atomic absorption spectrometer”, Spectrochim. Acta, 2003, 58B, 575.
7.M.W. Hinds, I.L. Shuttler, C.P. Bosnak, “Determination of titanium in fine gold by electrothermal atomic absorption spectrometry”, J. Anal. At. Spectrom., 1997, 12, 833.
8.T.L. Thiem, R.H. Salter, J.A. Gardner, Y.I. Lee, J. Sneddon, “Quantitative simultaneous elemental determinations in alloys using laser-induced breakdown spectroscopy (LIBS) in an ultra-high vacuum”, Appl. Spectrosc., 1994, 48, 58.
9.J. Sneddon, “Advances in atomic spectroscopy”, Elsevier, 2002.
10.J. Sneddon, T.L. Thiem, Y.I. Lee, “Lasers in analytical atomic spectroscopy”, VCH, 1996.
11.L.J. Radziemski, D.A. Cremers, “Laser-induced plasmas and applications”, New York and Basel, 1989.
12.Bassiotis, A. Diamantopoulou, A. Giannoudakos, F.R. Kalantzopoulou, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy”, Spectrochim. Acta, 2001, 56B, 671.
13.L.S. Onge, M. Sabsabi, P. Clelo, “Quantitative analysis of additives in solid zinc alloys by laser-induced plasma spectrometry”, J. Anal. At. Spectrom., 1997, 12, 997.
14.K. Kagawa, N. Idris, M. Wada, H. Kurniawan, K. Tsuyuki, S. Miura, “Carbon analysis for inspecting carbonation of concrete using a TEA CO2 laser-induced plasma”, Appl. Spectrosc., 2004, 58, 887.
15.M.A. Ismail, H. Imam, A. Elhassan, W.T. Youniss, M.A. Harith, “LIBS limit of detection and plasma parameters of some elements in two different metallic matrices”, J. Anal. At. Spectrom., 2004, 19, 489.
16.M. Kuzuya, H. Matsumoto, H. Takechi, O. Mikami, “Effect of laser energy and atmosphere on the emission characteristics of laser-induced plasmas”, Appl. Spectrosc., 1993, 47, 1659.
17.Ş. Yalin, Y.Y. Tsui, R. Fedosejevs, “Pressure dependence oc emission intensity in femtosecond laser-induced breakdown spectroscopy”, J. Anal. At. Spectrom., 2004, 19, 1295.
18.I.B. Gornushkin, A.Y. Kazakov, N. Omenetto, B.W. Smith, J.D. Winefordner, “Experimental verification of a radiative model of laser-induced plasma expanding into vacuum”, Spectrochim. Acta, 2005, 60B, 215.
19.H. Kurniawan, T.J. Lie, K. Kagawa, M.O. Tjia, “Laser-induced shock wave plasma spectrometry using a small chamber designed for in situ analysis”, Spectrochim. Acta, 2000, 55B, 839.
20.K. Kagawa, S. Yokoi, “Application of the N2 laser to laser microprobe spectrochemical analysis”, Spectrochim. Acta, 1982, 37B, 789.
21.H. Kurniawan, S. Nakajima, J.E. Batubara, M. Marpaung, M. Okamoto, K. Kagawa, “Laser-induced shock wave plasma in glass and its application to elemental analysis”, Appl. Spectrosc., 1995, 49, 1067.
22.B. Sall, J.L. Lacour, E. Vors, P. Fichet, S. Maurice, D.A. Cremers, R.C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis capabilities at stand-off distance and sulfur elements”, Spectrochim. Acta, 2004, 59B, 1413.
23.B.L. Drogoff, M. Chaker, J.M. Margot, M. Sabsabi, O. Barthelemy, T.W. Johnston, S. Laville, F. Vidal, “Influence of the laser pulse duration on spectrochemical analysis of solids by lasers-induced plasma spectroscopy”, Appl. Spectrosc., 2004, 58, 122.
24.V. Majidi, M.R. Joseph, “Spectroscopic Applications of Laser-Induced Plasamas”, Crit. Rev. Anal. Chem., 1992, 23, 143.
25.Y.I. Lee, T.L. Thihm, G.H. Kim, Y.Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals. part III. The effect of a controlled atmosphere in laser-ablated plasma emission”, Appl. Spectrosc., 1992, 46, 1597.
26.Y. Iida, “Effects of atmosphere on laser vaporization and excitation processes of solid samples”, Spectrochim. Acta, 1990, 45B, 1353.
27.W. Sdorra, K. Niemax, “Basic investigations for laser microanalysis: Ⅲ. Application of different buffer gases for laser-produced sample plumes”, Mikrochim. Acta, 1992, 107, 319.
28.孫昀孜, “利用電熱式原子吸收光譜法和雷射感應電漿破裂光譜法測定鎳基超合金”, 宜大學應用化學系博士論文, 2003.
29.J. Emsley, “The elements”, Oxford, Oxford University Press, 1998.
30.E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches”, Spectrochim. Acta, 2002, 57B, 1115.
31.D. Colombant, G.F. Tonon, “X-ray emission in laser-produced plasmas”, J. Appl. Phys., 1973, 44, 3524.
32.Q. Sun, M. Tran, B.W. Smith, J.D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy”, Anal. Chim. Acta., 2000, 413, 187.
33.P. Fichet, P. Mauchien, C. Moulin, “ Determination of impurities in uranium and plutonium dioxides by laser-induced breakdown spectroscopy”, Appl. Spectrosc., 1999, 53, 1111.
34.M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization”, Appl. Spectrosc., 1995, 49, 499.
35.F.J. Wallis, B.L. Chadwick, R.J.S. Morrison, “Analysis of lignite using laser-induced breakdown spectroscopy”, Appl. Spectrosc., 2000, 54, 1231.
36.G.W. Rieger, M. Taschuk, Y.Y. Tsui, R. Fedosjevs, “Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses”, Appl. Spectrosc., 2002, 56, 689.
37.B.L. Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthlemy, T.W. Johnston, S. Laville, F. Vidal, Y.V. Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys”, Spectrochim. Acta, 2001, 56B, 987.

Chapter 4
1.D.S. Anderson, B.D. Craig, “2nd Edition Handbook of Corrosion Data”, ASM International, 1995.
2.S.I. Chang, H.M. Liu, S.J.J. Tsai “Determination of aluminium in nickel-based alloy samples using a longitudinal Zeeman-effect correction transversely heated graphite atomizer and a deuterium background correction end-heated graphite atomizer in electrothermal atomic absorption spectrometry”, J. Anal. At. Spectrom., 1998, 13, 1123.
3.S.Y. Chen, M.S. Wu, S.J.J. Tsai “Determination of silicon in nickel-based alloys using electrothermal atomic absorption spectrometry with longitudinal Zeeman-effect background correction and zinc oxide pretreatment”, Anal. Chim. Acta, 2001, 435, 357.
4.T. Piippanen, J. Tummavrori, “Determinaiton of boron and silicon in nickel-chromium-iron alloy by inductively coupled plasma atomic emission spectrometry; matrix effect control by multiple linear regression model”, Analysis, 1997, 25, 69.
5.B.B.D. Lima, R.A. Conte, C.A. Nunes, “Analysis of nickel-niobium alloys by inductively couple plasma optical emission spectrometry”, Talanta, 2003, 59, 89.
6.V. Lazic, R. Fantoni, F. Colao, A. Santagata, A. Morone, V. Spizzichino, “Quantitative laser induced breakdown spectroscopy analysis of ancient marbles and corrections for the variability of plasma parameters and of ablation rate”, J. Anal. At. Spectrom., 2004, 19, 429.
7.L.J. Radziemski, D.A. Cremers, “Laser-induced plasmas and applications”, New York and Basel, 1989.
8.J. Sneddon, T.L. Thiem, Y.I. Lee, “Lasers in Analytical Atomic Spectroscopy”, VCH, 1996.
9.B.L. Drogoff, M. Chaker, J.M. Margot, M. Sabsabi, O. Barthelemy, T.W. Johnston, S. Laville, F. Vidal, “Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy”, Appl. Spectrosc., 2004, 58B, 122.
10.K.L. Eland, D.N. Stratis, D.M. Gold, S.R. Goode, S.M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation”, Appl. Spectrosc., 2001, 55, 286.
11.V. Bulatov, R. Krasniker, I. Schechter, “Converting spatial to pseudotemporal resolution in laser plasma analysis by simultaneous multifiber spectroscopy”, Anal. Chem., 2000, 72, 2987.
12.W. Hayes, R. Probstein, “Physics of shock waves and high- temperature hydrodynamic phenomena”, Academic Press, New York, 1966.
13.R. Noll, R. Sattmann, V. Sturm, S. Winkelmann, “Space- and time- resolved dynamics of plasma generated by laser double pulses interacting with metallic samples”, J. Anal. At. Spectrom., 2004, 19, 419.
14.I.B. Gornushikin, N. Omenetto, B.W. Smith, J.D. Winefordner, “Determination of the maximum temperature at the center of an optically thick laser-induced plasma using self-reversed spectral lines”, Appl. Spectrosc., 2004, 58, 1023.
15.G. Abdellatif, H. Imam, “ A study of the laser plasma parameters at different laser wavelengths”, Spectrochim. Acta, 2002, 57 B, 1155.
16.B.L. Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, Y.V. Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys”, Spectrochim. Acta, 2001, 56B, 987.
17.M. Capitelli, A. Casavola, G. Colonna, A.D. Giacomo, “Laser- induced plasma expansion: theoretical and experimental aspects”, Spectrochim. Acta, 2004, 59B, 271.
18.W.S. Budi, H. Suyanto, H. Kurniawan, M.O. Tjia, K. Kagawa, “Shock excitation and cooling stage in the laser plasma induced by a Q-Switched Nd:YAG laser at low pressures”, Appl. Spectrosc., 1999, 53, 719.
19.H. Kurniawan, Y. Ishikawa, S. Nakajima, K. Kagawa, “Characteristics of the secondary plasma induced by focusing a 10-mJ XeCl laser pulse at low pressures”, Appl. Spectrosc., 1997, 51, 1769.
20.J.A. Aguilera, C. Aragn, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures”, Appl. Surf. Sci., 2002, 197-198, 273.
21.NIST atomic spectra database. http://physics.nist.gov/cgi-bin/AtData/main_asd.
22.L.J. Radziemski, “Review of selected analytical applications of laser plasma and laser ablation, 1987-1994”, Microchem. J., 1994, 50, 218.
23.T.L. Thiem, R.H. Salter, J.A. Gardner, Y.I. Lee, J. Sneddon, “Quantitative simultaneous elemental determination alloys using laser-induced breakdown spectroscopy (LIBS) in an ultra-high vacuum”, Appl. Spectrosc., 1994, 48, 58.
24.P. Fichet, P. Mauchien, C. Moulin, “ Determination of impurities in uranium and plutonium dioxides by laser-induced breakdown spectroscopy”, Appl. Spectrosc., 1999, 53, 1111.
25.H. Kurniawan, S. Nakajima, J.E. Batubara, M. Marpaung, M. Okamoto, K. Kagawa, “Laser-induced shock wave plasma in glass and its application to elemental analysis”, Appl. Spectrosc.,1995, 49, 1067.
26.B. Salle´, J.L. Lacoura, E. Vorsa, P. Ficheta, S. Mauriceb, D.A. Cremersc, R.C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements”, Spectrochimi. Acta, 2004, 59B, 1413.

Chapter 5
1.D.S. Anderson, B.D. Craig, “2nd Edition handbook of corrosion data”, ASM International, 1995.
2.N. Carrin, A.M. Itriago, M.A. Alvarez, E. Eljuri, “Simultaneous determination of lead, nickel, tin and copper in aluminium-base alloy using slurry sampling by electrical discharge and multielement ETAAS”, Talanta, 2003, 61, 621.
3.T.J. Hosick, R.L. Ingamells, S.D. Machemer, “Determination of tin in soil by continuous hydride generation and inductively coupled plasma mass spectrometry”, Anal. Chim. Acta, 2002, 456, 263.
4.Y.S. Zhong, S.J. Lin, S.Y. Chen, S.J.J. Tsai, “Determination of tin pure copper by flow-injection hydride generation atomic absorption spectrometry”, Spectrosc. Lett., 2005, 38, 195.
5.K. Yang, R.F. Lonardo, Z. Liang, A.I. Yuzefovsky, F.R. Preli, X. Hou, R.G. Michel, “Determination of tin in nickel-based alloys by electrothermal laser-excited atomic fluorescence with confirmation of accuracy by inductively coupled plasma mass spectrometry and atomic absorption spectrometry”, J. Anal. At. Spectrom., 1997, 12, 369.
6.E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy:a review of the experimental approaches”, Spectrochim. Acta, 2002, 57B, 1115.
7.M.A. Khater, J.T. Costello, E.T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits”, Appl. Spectrosc., 2002, 56, 970.
8.K. Song, D. Kim, H. Cha, Y. Kim, E.C. Jung, I. Choi, H.S. Yoo, S. Oh, “Characterization of laser-induced plasma in a vacuum using laser ablation mass spectrometry and laser-induced breakdown spectrometry”, Microchem. J., 2004, 76, 95.
9.W.S. Budi, H. Suyanto, H. Kurniawan, M.O. Tjia, K. Kagawa, “Shock excitation and cooling stage in the laser plasma induced by a Q-Switched Nd:YAG laser at low pressures”, Appl. Spectrosc., 1999, 53, 719.
10.S. Yalin, Y.Y. Tsui, R. Fedosejevs, “Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy”, J. Anal. At. Spectrom., 2004, 19, 1295.
11.Z.A. Arp, D.A. Cremers, R.C. Wiens, D.M. Wayne, B. Salle, S. Maurice, “Analysis of water ice and water ice-soil mixtures using laser-induced breakdown spectroscopy: application to mars polar exploration”, Appl. Spectrosc., 2004, 58, 897.
12.H. Kurniawan, S. Nakajima, J.E. Batubara, M. Marpaung, M. Okamoto, K. Kagawa, “Laser-induced shock wave plasma in glass and its application to elemental analysis”, Appl. Spectrosc.,1995, 49, 1067.
13.Y.I. Lee, T.L. Thihm, G.H. Kim, Y.Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals. Part III. The effect of a controlled atmosphere in laser-ablated plasma emission”, Appl. Spectrosc., 1992, 46, 1597.
14.M. Pardede, H. Kurniawan, M.O. Tjia, K. Ikezawa, T. Maruyama, and K. Kagawa, “Spectrochemical analysis of metal elements electrodeposited from water samples by laser-induced shock wave plasma spectroscopy”, Appl. Spectrosc., 2001, 55, 1229.
15.V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenrder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples”, Spectrochim. Acta, 2000, 55B, 1771.
16.M. Sabsabi, P. Cielo, “Quantitative analysis of aluminium alloys by laser-induced breakdown spectroscopy and plasma characterization”, Appl. Spectrosc., 1995, 49, 499.
17.Y. Iida, “Effects of atmosphere on laser vaporization and excitation processes of solid samples”, Spectrochim. Acta, 1990, 45B, 1353.
18.W. Sdorra, K. Niemax, “Basic investigation for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes”, Mikrochim. Acta, 1992, 107, 319.
19.G. Abdellatif, H. Imam, “A study of the plasma parameters at different laser wavelengths”, Spectrochim. Acta, 2002, 57B, 1155.
20.L. St-Onge, M. Sabsabi, P. Cielo, “Quantitative analysis of additives in solid zinc alloys by laser-induced plasma spectrometry”, J. Anal. At. Spectrom., 1997, 12, 997.
21.J. Emsley, “The elements”, Oxford, Oxford University Press, 1998.
22.S. Amoruso, M. Armenante, V. Berardi, R. Bruzzese, N. Spinelli, “Absorption ans saturation mechanisms in aluminium laser ablated plasmas”, Appl. Phys. A, 1997, 65, 265.
23.X.L. Mao, M.A. Shannon, A.J. Fernandez, R.E. Russo, “Temperature and emission spatial profles of laser-induced plasmas during ablation using time-integrated emission spectroscopy”, Appl. Spectrosc., 1995, 49, 1054.
24.NIST atomic spectra database. http://physics.nist.gov/cgi-bin/AtData/main_asd.
25.H. Kurniawan, Y. Ishikawa, S. Nakajima, K. Kagawa, “Characteristics of the secondary plasma induced by focusing a 10-mJ XeCl laser pulse at low pressures”, Appl. Spectrosc., 1997, 51, 1769.
26.B.J. Marquardt, S.R. Goode, S.M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber optic probe”, Anal. Chem., 1995, 68, 977.
27.P. Fichet, P. Mauchien, C. Moulin, “Determination of impurities in uranium and plutonium dioxides by laser-induced breakdown spectroscopy”, Appl. Spectrosc., 1999, 53, 1111.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔