|
[1] Gross, S. T. and Lai, T. L. Nonparametric estimation and regression analysis with left-truncated and right-censored data. J. Amer. Statist. Ass., 1996, 91,1166-1180.” [2] Gross, S. T. and Lai, T. L. Boostrap methods for truncated data and censored data. Statist. Sinica, 1996, 6, 509-530.” [3] He, S. and Yang, G. L. Estimation of the truncation probability in the random truncation model. Ann. Statist., 1998, 26, 1011-1027. [4] Satten, G. A. and Datta S. The Kaplan-Meier estimator as an inverse-probabilityof-censoring weighted average. Amer. Statist., 2001, 55, 207-210. [5] Shen, P.-S. The product-limit estimates as an inverse-probability-weighted average.Communi. in Statist., Part A- Theory and Methods, 2003, 32, 1119-1133. [6] Tsai, W.-Y., Jewell, N. P. and Wang, M.-C. A note on the product-limit estimate under right censoring and left truncation. Biometrika, 1987, 74, 883-886. [7] Wang, M.-C.; Jewell, N. P.; Tsai, W.-Y. Asymptotic properties of the productlimit estimate under random truncation. Ann. Statist., 1986, 14 1597-1605. [8] Wang, M.-C. Product-limit estimates: a generalized maximum likelihood study. Communi. in Statist., Part A- Theory and Methods, 1987, 6, 3117-3132. [9] Wang, M.-C. Nonparametric estimation from cross-sectional survival data. J. Amer. Statist. Ass., 1991, 86, 130-143. [10] Woodroofe, M. Estimating a distribution function with truncated data. Ann. Statist., 1985, 13, 163-167.
|