臺灣博碩士論文加值系統

(3.238.72.122) 您好！臺灣時間：2022/05/26 10:40

:::

詳目顯示

:
 Twitter

• 被引用:0
• 點閱:149
• 評分:
• 下載:0
• 書目收藏:2
 A Gaussian-Legendre quadrature method is combined with analytical formulas for moments of the cumulative return under GARCH for pricing American option. To enhance the convergence speed for pricing American GARCH options, a modified Richardson extrapolation technique was employed. We show that the Gaussian-Legendre Quadrature (GLQ) GARCH option model performs superior, in both accuracy and computational time, than the alternative tree methods.
 A Gaussian-Legendre quadrature method is combined with analytical formulas for moments of the cumulative return under GARCH for pricing American option. To enhance the convergence speed for pricing American GARCH options, a modified Richardson extrapolation technique was employed. We show that the Gaussian-Legendre Quadrature (GLQ) GARCH option model performs superior, in both accuracy and computational time, than the alternative tree methods.
 Contents1. Introduction……………………………………….…………….….12. Pricing option under GARCH of Duan, Gauthier & Simonato (1999)……………………………………………………………….63. Pricing the numerical option……………………………………....83.1 Simple and Gaussian Legendre quadrature method………...83.2 Apply the Gaussian-Legendre quadrature rule to European option in the GARCH framework……………………...……103.3 Apply the Gaussian-Legendre quadrature rule to American option in the GARCH framework…………………………...144. Numerical analysis…..…………………………………………….17 4.1 Option prices………………………………………………….17 4.2 Hedge ratios…………………………………………………..215. Conclusions…..…………………………………………………....246. Appendix…………..………………………………………………257. References…………………………………………………………29Lists of Figures and TablesFigure1. The histogram and an approximating distribution of …………..312. A left-tail histogram magnified Figure 1 and an approximating distribution of …………………………………………………...32Table1. Comparing ranges for approximating a European put option priceby the Gaussian Legendre quadrature rule………………………...332. Comparing methods for approximating a European call option price………………………………………………………………..343. (a)(b)(c)The performances of the European call option in the GARCH framework………………………………………..35, 36, 374. At-the-money European call option prices and their time(comparing with Ritchken & Trevor (1999))………………...385. (a) The moments of the cumulative return…………………………39 (b) The European put option……………………………………….396. American put option in the GARCH framework comparing with R&T………………………………………………………………..407. American put option in the GARCH framework comparing with different maturity………………………..……………………..…..418. The European call option’s Delta…………………………………..429. The Amreican put option’s Delta…………………………………..43
 RefernecesAbramowitz, M., and Stegun, I. A. (1964), Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series 53, U.S. Government Pricing Office, Washington, D. C.Barraquand, J. and Martineau, D. (1995). Numerical Valuation of High Dimensional Multivariate American Securities. Journal of Financial and Quantitative Anaysis, 30, 383-338.Black, F., and Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economics, 81, 637-659.Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327.Broadie, M. and Glasserman, P. (1997). Pricing American-Style Securities Using Simulation. Journal of Economic Dynamics and Contral 21, 1323-1352.Chang, C. C., Chung, S. L., and Stapleton, R. C. (2001). Richardson Extrapolation Techniques for Pricing American-style Options.Davis, P. J., and Rabinowitz, P. (1984), Methods of Numerical Integration ( ed.), Academic Press, Orlando, Fla.Duan, J. C. (1995). The GARCH option pricing model. Mathematical Finance, 5, 13-32.Duan, J. C. (1996a). Cracking the Smile. Risk, 9(12), 55-59.Duan, J. C. (1997). Augmented GARCH(p,q) process and its diffusion limit. Journal of Econometrics, 79, 97-127.Duan, J. C., Gauthier, C., Sasseville, C., and Simonato, J. G. (2001). An analytical approximations for the GJR-GARCH and EGARCH option pricing models. Working paper, HEC Montreal.Duan, J. C., Gauthier, C., and Simonato, J. G. (1999). An analytical approximating for the GARCH option pricing model. Journal of Computational Finance, 2, 75-116.Duan, J. C. and Simonato, J. C. (1998). Empirical martingale simulation for asset prices. Management Science, 44, 1218-1233.Duan, J. C. and Simonato, J. G. (2001). American option pricing under GARCH by a Markov chain approximation. Journal of Economic Dynamics and Contral, 25, 1689-1718.Engle, R. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation. Econometrica, 50, 987-1008.Eric, J. and Michael, R. (2001). Gram-Charlier densities, Journal of Economic Dynamics & Contral, 25, 1457-1483.Engle, R. and Ng, V. (1993). Measuring and testing of the impact of news on volatility. Journal of Finance, 48, 1749-1778.Heston, S., and Nandi, S. (2000). A closed-form GARCH option pricing model. Review of Financial Studies, 13, 586-625.Jarrow, R., and Rudd, A. (1982). Approximate option valuation for arbitrary stochastic processes. Journal of Financial Economics, 10, 347-369.Nelson, D. (1991). Conditional Heteroskedasticity in Asset returns: A New Approach. Econometrica, 59, 347-370.Tilley, J. A. (1993). Valuing American Options in a Path Simulation Model. Transactions of the Society of Actuaries, 45, 83-104.Omberg, E. (1988). Efficient discrete time jump process models in option pricing. Journal of Financial and Quantitative Analysis, 161-174.Ritchken, P., and Trevor, R. (1999). Pricing options under generalized GARCH and stochastic volatility processes. Journal of Finance, 54(1), 377-402.Sullivan, M. A., (2000), Valuing American Put Options Using Gaussian Quadrature, Review of Financial Studies Vol. 13, No.1, 75-94.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 指數選擇權BS評價模型與GARCH評價模型之比較 2 評價臺指波動率指數選擇權 3 GARCH選擇權評價模型之複雜性研究 4 An Efficient GARCH Numerical Option Pricing Model

 無相關期刊

 1 預期與非預期事件對股價溢酬之影響—以台灣生物科技類股為例 2 加入金控對金融機構信用評等及市場佔有率之影響 3 網路拍賣之知覺風險、風險管控措施、信任與購買意向間關係之研究 4 小提琴之歌劇幻想曲─薩拉沙泰與瓦克斯曼的「卡門幻想曲」之版本比較及演奏探討/郭己溫小提琴獨奏會 5 金融控股公司共同行銷之規範-以競爭法為中心 6 醫療契約論 7 物流與供應鏈管理發展趨勢與人才職能需求之研究 8 青少年族群金錢態度之研究 9 会話分析から見た依頼表現について 10 明初官方用器的人物紋 11 影響電子期刊需求因素之探討 12 信用違約交換選擇權評價模型與應用 13 大量客製化下模組化產品結構之研究以台灣數位相機T公司為例 14 購併行為對金融機構股票報酬之影響 15 銀行處理不良債權策略之探討

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室