(3.235.191.87) 您好!臺灣時間:2021/05/14 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林尚蓉
研究生(外文):Shang-jung Lin
論文名稱:二形性酵母菌Pseudozymasp.SE4-R及其與FLO11基因中S1區域同源的核酸之研究
論文名稱(外文):Study of dimorphism and the DNA fragment homologous to S1 region of FLO11 gene on yeast Pseudozyma sp. SE4-R
指導教授:汪碧涵汪碧涵引用關係
指導教授(外文):Pi-han Wang
學位類別:碩士
校院名稱:東吳大學
系所名稱:微生物學系
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:138
中文關鍵詞:二形性偽菌絲真菌絲微陣列晶片
外文關鍵詞:pseudozymadimorphismpseudohyphaehyphaemicroarray
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
環境壓力造成真菌細胞的黏附性、細胞生理、或是細胞形態﹙二形性,dimorphism﹚改變。二形性是指真菌細胞可以酵母菌/菌絲兩種形態方式行營養生長。前人研究中,外界氮源缺乏會刺激Saccharomyces cerevisiae的兩條訊息傳遞路徑﹙cAMP-dependent PKA pathway和MAPK pathway﹚的活化,促使路徑下游的FLO11基因轉錄,造成S. cerevisiae細胞產生偽菌絲。從實驗室所保存由環境分離的酵母菌,篩得一株具二形性的酵母菌株,SE4-R,培養在YM培養基上時,該菌細胞形態為卵形、圓形、檸檬形或紡綞形的酵母細胞,以極性或雙極性﹙bipolar﹚方式出芽生殖,依形態、生理、生化與LSU 26S rDNA和ITS 的DNA序列分析,鑑定為Pseudozyma sp.。將SE4-R培養在碳氮源缺乏的MBS培養基時,會自酵母形轉成真菌絲形態﹙R1﹚穩定生長。當培養在十倍鈣離子濃度﹙6.8mM﹚的TMBS培養基時,酵母細胞菌落周圍出現真/偽菌絲(R2)。形態混雜的菌絲細胞,菌落中央保持出芽生殖的酵母形﹙YF﹚細胞。依據S. cerevisiae的FLO11基因中保守的S1區域核酸序列設計引子,STA1/STA1引子對可由S. cerevisiae全量核酸,增幅出一段476 bp的片段﹙C1-5﹚,解序後確認為S1蛋白基因序列,以DIG標定此片段製成探針,可偵測到SE4-R的基因體內有微量的雜合訊號,顯示SE4-R具類似片段但基因重複數低。再以STA1/STA2引子對經booster PCR增幅SE4-R的全量核酸,獲得549 bp的產物﹙SEpp﹚,其序列與S. cerevisiae的該片段C1-5有94%的序列相似度。但是將SEpp片段製作成探針,試圖了解SE4-R不同形態細胞﹙真菌絲/真偽菌絲﹚間,FLO11基因表現量是否不同,但以SEpp未能偵測到任何一形態細胞內FLO11基因的表現。此外,以Affymetrix Yeast S98 microarray微陣列分析法分析三形態細胞﹙R1、R2、YF﹚的基因表現。該晶片上點陣的探針是依據S. cerevisiae基因體內6,400個ORF的序列所設計,用三形態細胞的RNA與晶片雜合後,經晶片讀值分析,唯一找到比YF細胞RNA表現量高兩倍的基因是PHD1,出現在R1細胞的RNA中,Phd1是一個轉錄活化因子,其主要功能是調控FLO11基因的轉錄,促進偽菌絲生長,PHD1與Aspergillus nidulans的STUA基因和C. albicans的EFG1具同源性。但在R2細胞中則沒有找到表現量比YF高兩倍的基因,結果未找到與FLO11基因相同或是同屬FLO基因家族的基因﹙FLO gene family﹚,與實驗前一部分的雜合結果相符。在R1、R2的RNA內還找到一些被促進且與菌絲生長相關的基因,顯示用不同物種的核酸與S. cerevisiae的晶片雜合,雖然可能由於序列相差過大使得能辨識出有兩倍表現量差異的基因很少,但依然可以從中獲得一些相關的資訊。
The environmental stress causes some changes of cell adhesion or cell physiology and even cell morphology﹙such as dimorphism﹚of fungal cells. Nitrogen depletion activates two signalling transduction pathway, cAMP-dependent PKA pathway and MAPK pathway in S. cerevisiae, positively regulating the transcription of downstream target gene FLO11 result in filamentous growth of yeast cell. A dimorphic yeast strain, SE4-R was obtained from screening laboratory-stored yeast strains collected from the environment. Growing on rich YM medium, SE4-R has ovoid, round, lemon-shaped or spindle-shape yeast form cells, they are polar or bipolar budding. SE4-R was identified as Pseudozyma sp. based on cell morphology, physiological and biochemical characteristics, also on LSU 26S rDNA and ITS sequence information. Growing on poor medium MBS, SE4-R changes it’s morphology from yeast form to hypha cell (R1) and hyphae morphology remain stable; when growing on TMBS medium, a MBS medium with ten fold calcium concentration (6.8mM), appeared pseudo-/hyphae filament (R2) in the edge of cell colony and yeast form cells remain as budding cell in the middle of the R2 colony. Designing STA1/STA2 primer pair according to the sequence of conserved S1 region in FLO11 gene in S. cerevisiae, STA1/STA2 primers can amplify a 476 bp fragment (C1-5) from S. cerevisiae genomic DNA. After sequencing, fragment C1-5 is surely part of the S1 region sequence. Using DIG-labeled C1-5 fragment doing dot-blot hybridization to SE4-R genomic DNA, a slight hybridization signal can be detected which indicate that the homology sequence may exist in SE4-R genome but in quite small amount. Indeed, STA1/STA2 primer can amplify a 549 bp fragment (SEpp) from SE4-R genomic DNA by booster PCR.The sequence of SEpp has 94% similarity to the one of C1-5. In order to verify if FLO11 gene expressed differently in yeast form cell and filament cell, SEpp fragment was DIG-labeled and hybridized to the RNA of YF, R1, R2 cells. But FLO11 gene expression can’t be detected in any one of three morphology type cell. In addition, Affymetrix Yeast S98 microarray is used to analyze filamentation associated genes in wider aspect. It has high dendity probes arrayed on the Affymetrix chip. After analysis of the microarray, there is only one gene in R1 with 2-fold chang higher than YF cells. PHD1 is a transcription activator with main function in regulating the expression of FLO11 gene and enhancing pseudohyphae growth in S. cerevisiae. It is homologous to STUA gene of Aspergillus nidulans and EFG1 gene lf Candida albicans. There is no any result in microarray analysis shows any gene similar to FLO11 which can correspond to the result in the previous study. There’re still some genes found related to filamentous growth induced in R1 and R2 cells, indicated that although there may be some difficulties to identify more genes with 2-fold change expression, some useful information still can be obtained.
目錄 Ⅰ
表目錄 Ⅵ
圖目錄 Ⅶ
中文摘要
英文摘要
第一章、SE4-R菌株的二形性與FLO11基因的研究 1
前言 1
研究目的 20
材料方法 20
一、篩選具二形性的酵母菌株 20
菌株來源 20
菌株的保存與活化 21
以貧養高鈣的MBS培養基促進酵母菌產生二形性 21
測試菌絲細胞與酵母形細胞形態轉換率 22
二、鑑定未知酵母菌株 23
﹙一﹚傳統鑑定方法鑑定酵母菌 23
菌落外觀觀察 23
細胞形態觀察 23
投擲孢子觀察 25
生理生化特性 25
1.Biolog MicrologTM system鑑定系統 25
2.碳源同化測試 27
3.生長溫度之測試 28
4.Diazonium Blue B呈色反應 28
5胞外類澱粉形成測試 28
﹙二﹚分子生物學方法鑑定酵母菌 29
核酸分析 29
1.酵母菌DNA的萃取 29
2.核酸的定量與純度比較 30
3.聚合酶連鎖反應﹙Polymerase Chain Reaction,PCR﹚ 30
4.瓊脂膠體電泳分析PCR產物 31
5.序列分析 31

菌落外觀觀察 23
細胞形態觀察 23
投擲孢子觀察 25
生理生化特性 25
1.Biolog MicrologTM system鑑定系統 25
2.碳源同化測試 27
3.生長溫度之測試 28
4.Diazonium Blue B呈色反應 28
5胞外類澱粉形成測試 28
﹙二﹚分子生物學方法鑑定酵母菌 29
核酸分析 29
1.酵母菌DNA的萃取 29
2.核酸的定量與純度比較 30
3.聚合酶連鎖反應﹙Polymerase Chain Reaction,PCR﹚ 30
4.瓊脂膠體電泳分析PCR產物 31
5.序列分析 31

二、鑑定SE4-R菌株 42
﹙一﹚傳統鑑定方法鑑定酵母菌 42
﹙二﹚分子生物學方法鑑定酵母菌 44
三、尋找SE4-R基因體中與FLO11基因序列具同源性的核酸片段 47
﹙一﹚PCR相關實驗 47
﹙二﹚核酸雜合試驗 51
討論 52
第二章、以寡核苷酸微陣列分析與菌絲生長相關的基因 60
前言 60
材料方法 64
取得品質良好的RNA樣本 64
晶片雜合試驗 64
晶片讀值分析 65
結果 66
RNA 品質 66
晶片讀值分析 67

相關基因功能分析 68
討論 71
參考文獻 75
附錄一 本研究所用之培養基及緩衝液 132
附錄圖一 136
附錄圖二 137
附錄圖三 138





表目錄
表一、 SE4-R三種形態細胞(R1、R2、YF)在不同形態間的轉換率 87
表二、 以Biolog快速鑑定系統(version 3.0 database)鑑定SE4-R菌株 88
表三、 SE4-R菌株於Biolog YT MicroPlateTM上的94個生理生化反應結果 89

表四、 比較SE4-R以Biolog測試的26項生理生化結果與The Yeast書中其他菌株的結果 91
表五、 SE4-R LSU rDNA D1/D2與rDNA ITS區域序列 93
表六、 SE4-R菌株rDNA D1/D2區域(641bp)與ITS區域(736bp)之序列與基因庫中相近菌種比對的相似度 94
表七、 R1細胞中表現量高兩倍的八個開放讀架 95
表八、 三十二個在R1細胞中被促進的基因 96
表九、 五十六個在R1細胞中被抑制的基因 98
表十、 三十三個與鈣離子相關的基因 102
表十一、 五十個在R2細胞中被促進的基因 105
表十二、 十一個在R2細胞中被抑制的基因 110
圖目錄
圖ㄧ、 12株供試酵母菌在YM 培養基與貧養的MBS培養基上的菌落形態 111
圖二、 SE4-R的酵母形 (YF)、真菌絲形 (R1)與真/偽菌絲形 (R2)細胞的菌落形態 113

圖三、 SE4-R的酵母形 (YF)、真菌絲形 (R1)與真/偽菌絲形 (R2)細胞的細胞形態 114
圖四、 SE4-R三種形態細胞(R1、R2、YF)在不同形態間的轉換率 116
圖五、 SE4-R菌株的菌落及細胞圖 117
圖六、 以SE4-R與Ustilaginaceae其他屬菌種的LSU D1/D2區域序列建構類源關係樹 118
圖七、 比對與FLO11基因序列相似的核酸序列 119
圖八、 PCR反應條件最佳化 123
圖九、 以STA1/STA2引子對,增幅YM培養基上的SE4-R全量核酸(1)並且再以booster PCR增幅一次(2) 124
圖十、 以STA1/STA2引子對增幅插入pGEMT-easy vector 的核酸片段 125
圖十一、 比對以STA1/STA2增幅的S. cerevisiae PCR產物(C1-5) 與SE4-R PCR產物序列(SEPP)以及FLO11部分序列 (STA1-2476) 126
圖十二、 檢查探針標記的效率與探針的適用性 129
圖十三、 RNA電泳圖 130
圖十四、 RNA樣本的品質確認 131
Ashner, M. J., Mager, J. and Leibowitz, J. 1945. Production of extracellular starch in cultures of capsulated yeasts. Nature. 156, 295.
Batnett, J. A., Payne, R. W. and Yarrow, D. 1990. Yeasts: characteristics and identification. Second edition. Cambridge UK.
Barnett, J. A. and Robinow, C. F. 2002. A history research on yeasts4: cytology part l,1890-1950. Yeast. 19, 151-182.
Barth, G. and Gaillardin, C. 1997. Physiology and genetics of the dimorphism fungus Yarrowia lipolytica. FEMS Microbiol. Rev. 19, 219-237.
Bisson, L. F. 1991. Influence of nitrogen on yeast and fermentation of grapes. In Proceeding of the international Symposium on Nitrogen in Grapes and Wine.1991. American Society for Enology and Viticulture. pp136-147.
Boekhout, T. 1995. Pseudozyma Bandoni Emend. Boekhout, a genus for yeast-like anamorphs of Ustilaginales. J. Gen. Appl. Microbiol. 41, 359-366.
Borges-Walmsley, M. I. and Walmsley, A. R. 2000. cAMP signaling in pathogenic fungi:control of dimorphic switching and pathogenicity. Trends Microbiol. 8, 133 -141.
Brown, A. J. P and Gow, N. A. R. 1999. Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol. 7, 333-338.
Cantore, M. L, Galvagno, M. A. And Passeron, S. 1983. cAMP levels and in situ measurement of adenylate cyclase and a cAMP phosphodiesterase activities during yeast-to-hyphae transition in the dimorphic fungus Mucor rouxii. Cell Biol. Int. Rep. 7, 947-954.
Carvalho, M. J. A, Amorim Jesuino, R. S., Daher, B. S., Silva-Pereira, I., Freitas, S. M., Soraes, C. M. A. and Felipe, M. S. S. 2003. Functional and genetic characterization of calmodulin from the dimorphic and pathogenic fungus Paracoccodioides brasiliensis. Fung. Gen. Biol. 39, 204-210.
Chant, J. and Herskowitz, I. 1991. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell. 65,1203 -1212.
Cruz, M. C., Fox, S. D. and Heitman, J. 2001. Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans. The EMBO J. 5, 1020-1032.
Do Carmo-Sousa, L., and Phaff, H. J. 1962. An improved method for the detection of spore discharge in the Sporobolomycetaceae. J. Bacteriol. 83, 434-435.
Dominguez, A., Ferminan, E., Gaillardin, C. 2000. Yarrowia lipolytica: an organism amenable to genetic manipulation as a model for analyzing dimorphism in fungi. In Ernst J. F., Schmidt, A. eds. Dimorphism in human pathogenic and apathogenic yeasts. Karger, Basel, pp151-172.
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus. 12, 13-15.
Edskes, H.K., Hanover, J. A., and Wickner, R. B. 1999. Mks1p is a regulator of nitrogen catabolism upstream of Ure2p in Saccharomyces cerevisiae Genetics. 153, 585-594.
Erdman, S., Lin, L., Malczynski, M. and Snyder, M. 1998. Pheromone-regulated genes required for yeast mating differentiation. J. Cell Biol. 140, 461-483.
Fell, J. W., Boekhout, T., Fonseca, A., Scorzetti, G. and Statzell-Tallman. 2000. A biodiversity and systematic of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int. J. Syst. and evol. Microbiol. 50, 1351-1371.
Freifelder, D. 1960. Bud position in Saccharomyces cerevisiae. J. Bacteriol. 80, 567-568.
Gagiano, M., Van Dyk, D. Bauer, F. F., Lambrechts, M. G. and Pretorious, I. S. 1999. Divergent regulation of the evolutionary closely related promoters of the Saccharomyces cerevisiae STA2 and MUC1 genes. J. Bacteriol. 181, 6497-6508.
Gagiano, M., Van Dyk, D. Bauer, F. F., Lambrechts, M. G. and Pretorious, I. S. 1999. Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol. Microbiol. 31,103-116.
Gancedo, J. M. 2001. Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25, 107-123.
Garcia, R., Bermejo, C., Grau, C., Perez, R., Rodriguez-Pena, J. M., Francois, J., Nombela, C., Arroyo, J. 2004. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J. Biol. Chem. 279, 15183-95.
Gimeno, C. J. and Fink, G. R. 1994. Introduction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcription regulators of fungal development. Mol Cell Biol. 14, 2100-2112.
Gimeno, C. J., Ljungdahl, P. O., Styles, C.A. and Fink, G. R.1992. Unipolar cell division in the yeast Saccharomyces cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 68, 1077-1090.
Gilliermond, A. 1920. The yeasts. John Wiley and Sons. New York.
Gold, S., Duncan, G., Barrett, K. and Kronstad, J. 1994. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 8, 2805-2816.
Gow, N. A. R. 1994. Growth and Guidance of the fungal hypha.Microbiology ﹙UK﹚. 140, 3193-3205.
Guillot, J., Gueho, E. and Prevost, M. C.1995.Ultrastructural feature of the dimorphic yeast Malassezia furfur.Journal of Mycological Medicine.5, 86-91.
Gunning, B. E. S. 1982. The root of the water fern Azolla: cellular basis of development and multiple roles for cortical microtubules. In Developmental Order: Its Origin and Regulation. New York: Alan R. Liss, pp379-421.
Huang, Z. and Ough, C. S.1989. Effect of vineyard locations, varieties, and rootstocks on the juice amino acid composition of several cultivar. Am. J. Enol. Vitic.40, 135-139.
Hyman, A. A. 1989. Centrosome movement in the early division of Caenorhabditis elegans: a cortical site determining centrosome position. J. Cell Biol. 109, 1185-1193.
Iraqui, I., Vissers, S., Bernard, F., De Craene, J. O., Boles, E., Urrestarazu, A. and Andre, B. 1999. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Gee1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol. 19, 989-1001.
Johnson, B. F., and McDonald, I. J. 1983. Cell division: a separable cellular sub-cycle in the fission yeast Schizosaccharomyces pombe. J. Gen. Microbiol. 129, 3411-3419.
Johnson, M. H., and Maro, B. 1986. Time and space in the mouse early embryo: a cell diversification. In Experimental Approaches to Mammalian Embryonic Development, J. Rosant and R. A. Pedersen, eds. New York: Cambridge Unversity Press, pp35-65.
Kadosh, D., and Johnson, A. D. 2001. Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol. Cell Biol. 21, 2496-2505.
Kayo, T., Allison, D.B., Weindruch, R., and Prolla, T.A. 2001. Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc. Nat. Acad. Sci. 98, 5093-5098.
Kerr, N. K., Martin, M. and Churchill, G. A. 2001. Analysis of variance for gene expression microarray data. J. comput. Biol. 7, 819-837.
Kirsop, B. E. and Kurtzman, C. P. 1988. Living resources for biotechnology. Yeasts. Cambridge University Press, Cambridge.
Klasson, H., Fink, G. R. and Ljungdahl, P. O. 1999. Ssy1 and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol. Cell Biol. 19, 5405-5416.
Kockova-Kratochvilova. 1990. Yeast and Yeast-like organisms. VCH. New York.
Kreger-van, Rij. N. J. W. 1984. The yeasts, a taxonomic study. third and enlarged edition. Elsevier Science, Netherland.
Kron, S. J. and Gow, N. A. 1995. Budding yeast morphogenesis: signaling, cytoskeleton and cell cycle. Curr. opin. cell biol. 7, 845-855.
Kurtzman, C. P. and Fell, J. W. 1998. The Yeasts, A Taxonomic Study. fourth revised and enlarged edition. Elsevier Science, Netherlands.
Lambrechts, M. G., Bauer, F. F., Marmur, J. and Pretorious, I. S. 1996. Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl. Acad. Sci. USA. 93, 8419-8424.
Langeron, M. and Talice, R. V. 1932. Nouvelles methods d`etude et essai de classification des champignons levouriformes. Annals de Parasitologie Humaine et Comparee. 10, 1-180
Lee, C. F., Lee, F. L., Hsu, W. H. and Phaff, H. L. 1994. Arthroascus fermentas, a new yeast species isolated from soil in Taiwan. Int. J. Sys. Bacteriol. 44, 303-307.
Lee, B. N. and Elion, E. A. 1999. The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Proc. Natl. Acad. Sci. USA. 96,12679-12684.
Lengeler, K. B., Davidson, R. C., D’ Souza, C., Harashima, T., Shen, W. C., Wang, P., Pan, X., Waugh, M. and Heitman, J. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64, 746-785
Lillie, R. D. 1977. Conn’s Biological Stains, ninth edition. Baltimore: Williams and Wilkins.
Liu, H. 2001. Transcriptional control of dimorphism in Candida albicans. Current Opinion in Microbiology. 4, 728-735.
Liu, H., Styles, C. A. and Fink, G. R. 1996. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics. 144. 967-978.
Lo, W. S. and Dranginis, A. M. 1996. FLO11, a yeast gene related to the STA Genes, encodes a novel cell surface flocculin. Journal of Bacteriol. 178, 7144-7151.
Lo,W. S. and Dranginis, A. M. 1998.The cell surface flocculin Flo11 is required for pseudohyphae formation and invation by Saccharomyces cerevisiae. 9, 161-171.
Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, K. T., Gallo, M. V., Hortn, H. and Brown, E. L. 1996. Expression monitoring by hybridization to high density oligonucleiotide arrays. Nature Biotechenology. 14, 1675-1680
Loeb, J. D., Kerentseva, T. A., Pan, T., Sepulveda-Becerra, M. And Liu, H. 1999. Saccharomyces cerevisiae G1 cyclin are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway. Genetics. 153, 15355-1546
Lorenze, M. C. and Heitman, J. 1998a. Yeast. Regulators of pseudohyphal differentiaion in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics. 150, 1443-1457 .
Lorenze, M. C., Pan, X., Harashima, T., Cardenas, M. E., Xue, Y., Hirsch, J. P. and Heitman, J. 2000b. The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics. 154, 609-622.
Madhani, H. D. Galitski, T., Lander, E. S. and Fink, G. R. 1999. Effectors of a developmental mitogen-activated protein kinase cascade revealed by expression signatures lf signaling mutants. Proc Natl Acad Sci USA. 96, 12530-12535.
Magasanik, B. 1992. Regulation of nitrogen utilization. In: The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae: Vol 2 Gene Expression. Cold Spring Haobor Lab press. New York
Mayorga, M. and Gold, S. 1999. A MAP kinase encoded by ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mol. Microbiol. 34, 485-497.
McGinnis, M. R., Molina, T. C.,Pierson, D. L. and Mishra, S. K.1996. Evaluation of the Biolog MicroStation system for yeast identification. Journal of Medical and Veterinary Mycology 34, 349-352.
Mosch, H. U., Kubler, E., Krappmann, S., Fink, G. R. and Braus, G. H. 1999. Crosstalk between the Ras2p0controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell. 10, 1325-1335.
Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J. 1990. PCR Protocols, a guide to methods and applications. Academic press, U.S.A
Maresca, B., and Kobayashi, G. S.1989. Dimorphism in Histoplasma capsulata: a modelfor the study of a cell differentiation in pathogenic fungi. Microbiol. Rev.53, 186- 209.
Muthukumar, G. and Nickerson. K. W. 1984. Ca﹙Ⅱ﹚-calmodulin regulation of fungal dimorphism in Ceratocystis ulmi. J. Bacteriol.159, 390-392.
Neer, E. J. 1995. Heterotrimeric G-proteins: organizers of transmembrane signals. Cell.80, 249-257.
Odds, F. C. 1988. Candida and candidosis. pp.42-59. London: Balliere-Tindall.
Odds, F. C.1994 Candida species and virulence.American Society of Microbiology News. 60 , 313-318.
Palecek, S. P., Parikh, A. S. and Kron, S. J.2002. Sensing, signaling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth . Cell. 148, 893-907.
Palittapongarnpim, M., Pokethitiyook, P., Upatham, E. S. and Tangbanluekal, L. 1998.Biodegradation of crude oil by soil microorganisms in the tropic. Biodagradation .93, 83-90.
Pan, X. and Heitman, J. 1999. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4874- 4887.
Posas, F., Takekawa, M. and Saito, H. 1998. Signal transduction by MAP kinase cascade in budding yeast. Curr Opin Microbiol. 1, 175-182.
Powers, S., Gonzales, E., Christensen, T., Cubert, J. and Broek, D. 1991. Functional cloning of BUD5, a CDC25-dependent activation that can suppress a dominant - negative RAS2 mutant. Cell. 65, 1225-1231.
Pringle, J. R. and Hartwell, L. H. 1981. The Saccharomyces cerevisiae cell cycle. In the Molecular Biology of the Yeast Saccharomyces: Life cycle and Inheritance. Cold Spring Harbor, New York, pp 97-142.
Robertson, L. S. and Fink, G. R. 1998. The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc. Natl Acad. Sci. USA. 95, 13783-13787.
Rodriguez, C. and Dominguez, A. 1984. The growth characteristics of Saccharomyces lipolytica: morphology and induction of mycelium formation. Can. J. Microbiol. 30, 605-612.
Rolland, F., De Winde, J. H., Lemaire, K., Boles, E., Thevelein, J. M. and Winderickx, J. 2000.Glucose-induced cAMP signaling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase dependent sensing process. Mol. Microbiol. 38, 348-358.
Romero, M. C., Cazau, M. C., Giorgieri, S., and Arambarri, A. M. 1998. Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ. Pollu.. 101, 355-359.
Ruiz-Herrera, J., Sentandreu, R. 2002. Different effectors of dimorphism in Yarrowia lipolytica. Arch Microbiol. 178, 477-483.
Rupp, S., Summers, E., Lo, H. J., Madhani, H. and Fink, G. R. 1999. MAPK kinase and cAMP filamentous pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 18, 1257-1269.
Sambrook, J., Fritsh, T. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. second edition. Cold spring harbor laboratory press. USA
Schena, M., Shalon, D., Davis, R. W., Brown, P. O. 1995. Quntitative monitoring of gene expression patterns with a complementary DNA microarray. Sci. 5235, 467-470.
Scherwitz, C., Martin, R. and Ueberberg, H. 1978. Ultrastructural investigation of the formation Candida albicans germ tubes and septa. Sabouraudia. 16, 115-124.
Shepherd, M. G., Poulter, R. T. M. and Sullivan, P. A. 1985. Candida albicans: biology, genetics and pathogenicity. Annu. Rev. Microbiol. 39, 576-614.
Southern, E. M. 1975. Detection of specific sequence among DNA fragmenta separated by gel electrophoresis. J. Mol. Biol. 98, 503-517.
Soushko, M. and Mithell, A. P. 2000. An RNA-binding protein homologue that promotes sporulation-specific gene expression in Saccharomyces cerevisiae. 16, 631-639.
Stoldt, V. R., Sonneborn, A., Leuker, C. E. and Ernst, J. F. 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved calss of bHLH proteins regulating morphogenesis process in fungi. EMBO J. 16, 1982-1991.
Sugita, T., Takashima, M., Poonwan, N., Mekha, N., Malaithao, K., Thungmuthasawat, B., Prasarn, S., Luangsook, P. and Kudo, T. 2003. The first isolation of Ustilaginomycetous anamorphic yeasts, Pseudozyma species, from patients’ blood and a description of two new species: P. parantarctica and P. thailandica. Microbiol. Immunol. 47, 183-190.
Sugita, T., Nishikawa, A., Ikeda, R., and Shinoda, T. 1999. Identification of medically relevant Trichosporon species based on sequences of internal transcribed spacer regions and construction of a database for Trichosporon identification. J. Clin. Microbiol. 37, 1985-1993.
Sutherland, A. E., Speed, T. P., and Calarco, P. G.1990. Inner cell allocation in the mouse morula: the role of oriented division during fourth cleavage. Dev. Biol.137, 13-25.
Svoboda, A. and Masa, J.1970. The protoplast of the dimorphism yeast Endomycopsis fibuligera. Folia Microbiology. 15, 199.
Ter Schure, E. G., Van Riel, N. A. and Verrips, C. T. 2000. The role of ammonium metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 61, 17-32.
Teunissen, A. W. R. H. and Steensma, H. Y. 1995. Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast. 11, 1001-1013.
Viard, B. and Kuriyama, H. 1997. Phase-specific protein expression in the dimorphic yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun. 233, 480-486.
Walker, G. M. and O’Neill, J. D. 1990. Morphological and metabolic changes in the yeast Kluyveromyces marxianus var. marxianus NRRLy 2415. Journal of Chemical Technology and Biotechnology. 49,75-89.
Walker, G. M.1998. Yeast Physiology and biotechnology.second edition.Wiley, England.
Wartmann, T. and Kunze, G. 2000. Genetic transformation and biotechnological application of the yeast Arxula adeninivorans. Appl. Microbiol. Biotechnol. 54, 619-624.
Webber, J.F.1993. D factor and their potential for controlling Dutch elm disease. In: Dutch Elm Disease Research. Cellular and Molecular Approaches. Springer-Verlag, USA. pp322-332.
Wiame, J. M., Grenson, M. and Arst, H. N. 1985. Nitrogen catabolite repression in yeasts and filamentous fungi. Adv. Microb. Physiol. 26, 1-88.
Wickerham, L. J. 1951. Taxonomy of yeasts. Tech. Bull. USDept. Agric.1029, 1-56.
White, T. J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, 315-322. In Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J.﹙ed.﹚, PCR protocols: a guide to methods and applications. Academic Press.
Wodicka, L., Dong, H., Mitman,, M., Ho, M. H. and Lockhart, D. J. 1997. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnology. 15, 1359-1367.
Wolf, K. N. 1996. Nonconventional yeasts in biotechnology. Springer, Berlin.

Xue, Y., Battle, M. and Hirsch, J. P. 1998. GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Gα subunit and functions in a Ras-independent pathway. EMBO J. 17, 1996-2007.
Yamashita, I., Nakamura, M. and Fukui, S. 1985. Nucleotide sequence of the extracellular glucoamylase gene STA1 in the yeast Saccharomyces diastaticus. J. Bacteriol.161, 567- 573.
Yamashita, I., Nakamura, M. and Fukui, S. 1987. Gene fusion is a possible mechanism underlying the evolution of STA1. J. Bacteriol. 169, 2141-2149.
Yokoyama, K. and Takeo, K. 1983. Differences of asymmetrical division between the pseudohyphal and yeast forms of Candida albicans and their effect on multiplication. Archives of Microbiol. 134, 251-253.
Yun, C. W., Tamaki, H., Nakayama, R., Yamamoto, K. and Kumagai, H.1998. Gpr1,aputative G-protein coupled receptor, regulates glucose-dependent cellular cAMP level in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun . 252, 29-33.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top