( 您好!臺灣時間:2023/09/25 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Shen-wen Chiu
論文名稱(外文):MreB Cytoskeleton of Vibrio parahaemolyticus
指導教授(外文):Hin-chung Wong
外文關鍵詞:Vibrio parahaemolyticusstressmorphologyMreBactincytoskeleton
  • 被引用被引用:0
  • 點閱點閱:573
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
長久以來,原核生物被視為一群簡單而不具顯著次細胞結構的生命形式。在真核細胞中,不同細胞骨架系統間的交互作用則提供了建立複雜細胞結構的基礎。隨著實驗技術進展,原核細胞內不同巨分子特殊的動態空間分佈正逐漸被揭露。如今三種曾被視為是真核與原核生物間主要差異的細胞骨架系統,已全部在原核生物發現了對應的系統。MreB是真核生物肌動蛋白(actin)的同源物,也是目前已知原核細胞骨架中功能最多樣者。舉凡型態、細胞分裂、細胞極性(polarity)、染色體分離等皆與MreB密切相關。然而目前MreB的研究僅限於少數菌種和特定面向。本實驗室長久致力於腸炎弧菌(Vibrio parahaemolyticus)相關的研究,發現腸炎弧菌為適應不同的環境因子,會產生多種型態變化,我們推測MreB是其中關鍵。為檢視此假設,我首先建構了腸炎弧菌MreB和黃色螢光蛋白(yellow fluorescent protein, YFP)的接合蛋白質,藉以觀察MreB在細胞內的分佈動態。結果發現在一般生長狀態下,對數期(log-phase)生長的腸炎弧菌表現螺旋狀MreB細胞骨架,少數細胞亦帶有環狀結構。當菌體進入穩定期(stationary phase),MreB螺旋會逐漸鬆散,形成橫越菌體的線形結構,最終導致MreB細胞骨架解體。相同現象亦可在我另外建立的大腸桿菌(Escherichia coli)系統中觀察到。YFP-MreB過量表現會導致腸炎弧菌MreB細胞骨架結構和細胞型態劇烈改變。以曠時(time-lapse)攝影觀察後,推測菌體乃因細胞分裂受抑制及失去對菌體寬度的控制,隨處於細胞週期之不同階段而形成球狀、蠶豆狀、絲狀、念珠狀等膨大細胞。在長時間培養後,型態變異的腸炎弧菌細胞仍維持表面結構的完整性,異於快速自我分解(autolysis)的mreB缺失菌株。當盤尼西林結合蛋白(penicillin-binding proteins)作用受抑制後,菌體因YFP-MreB過量表現的膨大現象即大幅減小,顯示細胞壁合成位置隨MreB分佈改變而受到擾亂,進而導致膨大效應。此亦間接證實由細胞壁直接提供了決定菌體型態的機械力量,而非MreB細胞骨架提供支撐力量。膨大細胞的大小與其中MreB細胞骨架網絡的模式,與酵母菌之模式相似。本研究對MreB於腸炎弧菌壓力適應所扮演的角色,以及環境壓力對MreB的影響,提供了初步的認識。
The interior of a prokaryote is long thought as an amorphous bag containing homogeneous solution of macromolecules, without any apparent subcellular architecture. In its eukaryote counterpart, however, a cytoskeleton provides the framework for complex subcellular organization. Technical advances in the field of live-cell imaging have introduced the biologists to a new, dynamic and subcellular world of prokaryotes. The three cytoskeletal systems once regarded as a defining distinction between prokaryotic and eukaryotic cells are all have their prokaryotic counterparts now. MreB is the homolog of eukaryotic actin, and is also the one with most diverse roles in prokaryotes. MreB participates in morphogenesis, cell division, cell polarity and chromosome segregation. However, MreB is only studied in a limited amount of species and perspectives. Our group has studied the pathogen Vibrio parahaemolyticus for a long time. We found that V. parahaemolyticus can adapt to various environmental conditions by differential morphogenesis. MreB is likely to play an essential role in these processes. Thus I constructed a functional YFP-MreB fusion protein to visualize MreB cytoskeleton in V. parahaemolyticus. I found that under normal growth conditions, MreB formed helical cables, sometimes middle rings, in log-phase cells. When cells were in stationary phase, the helical cables relaxed and remodeled to straight filaments across the cells. These filaments ultimately disassociated. An YFP fused to the Escherichia coli version of MreB was also constructed. The behaviors of E. coli MreB were very similar to those of V. parahaemolyticus MreB. I also found that overexpression of YFP-MreB induced dramatic effects on MreB localization and morphogenesis in V. parahaemolyticus. The effects were probably due to cell division inhibition and lose of control in cell width. Combined with their stages in the cell cycle, different morphology resulted. After prolonged incubation, cells with abnormal morphology still kept their membrane integrity. When the activities of penicillin-binding proteins were disturbed, morphological distortions were largely repressed. This indicates that the morphological abnormality was due to mislocalization of cell wall synthesis machinery, and the MreB cytoskeleton did not provide the mechanical force to support morphology. Cells overexpressed YFP-MreB could grow to the size of a yeast cell, and the cytoskeletal networks were very similar between MreB and actin. My work provides a preliminary step in the study of MreB under stresses and also the roles of MreB in the stress response of V. parahaemolyticus.
摘要 XI
The New Prokaryotic Cell Biology 2
Reflections on the History 2
The Prokaryotic Cytoskeleton 5
FtsZ: a Tubulin Homolog 7
I. Biochemical Properties of FtsZ 7
A. Structures of FtsZ monomer and protofilament 7
B. FtsZ polymerization 9
C. Chemical modulators of FtsZ 9
II. Functions of FtsZ 10
A. Cell division 10
B. Cell morphology 12
III. Regulation of FtsZ Cytoskeleton 12
A. Regulation of FtsZ expression 12
B. Protein modulators of FtsZ assembly 14
MreB: an Actin Homolog 16
I. Biochemical Properties of MreB 17
II. Functions of MreB 21
A. Morphogenesis, cell division, and development 21
B. Chromosome segregation 26
C. Cell polarity and protein localization 29
III. Regulation of MreB 31
IV. Other Prokaryotic Actin Homologs 32
A. FtsA 32
B. ParM 33
C. Other actin-like proteins 34
CreS: an Intermediate Filament-Like Protein 35
Vibrio parahaemolyticus: a Cell Biological Perspective 36
Cellular and Developmental Biology of V. parahaemolyticus 37
I. Multiple Chromosomes and Their Segregation 37
II. Swarming 39
III. Morphogenesis during Stress 40
The Research Purpose 42
Bacterial Strains and Growth Conditions 44
Plasmids 44
Conjugation 45
Microscopy 45
Preparation of Cells for Microscopy 45
Immobilization of Cells 46
Agarose Pad 46
Poly-L-lysine-coated Slides 46
Gelatin-coated Slides 46
Membrane Filter 46
Image Acquisition and Processing 47
Measurement of the Helical Pitch 47
Obtain Fluorescence Images of Cross Sections of MreB Cytoskeleton 49
1. Bioinformatic Analysis of the mre Cluster 49
2. Construction and Expression of YFP-MreB Fusion Protein in V. parahaemolyticus 50
3. Localization of YFP-MreB in Mid-log Phase V. parahaemolyticus Cells 51
4. Localization of YFP-MreB in Stationary-Phase V. parahaemolyticus Cells 53
5. Localization of YFP-MreB in E. coli Cells 54
6. Effects of YFP-MreB Overexpression in V. parahaemolyticus 54
1. What Omic Studies Can Tell Us about MreB? 56
2. Dynamic Behaviors of MreB in V. parahaemolyticus 56
3. Relationship between MreB Expression Levels and the Structures of MreB Cytoske- leton 57
4. The Role of MreB in Morphogenesis 58
Abhayawardhane, Y. and Stewart, G.C. (1995). Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J. Bacteriol. 177, 765-773.
Ackermann, M., Stearns, S.C., and Jenal, U. (2003). Senescence in a Bacterium with Asymmetric Division. Science 300, 1920.
Addinall, S.G. and Holland, B. (2002). The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J. Mol. Biol. 318, 219-236.
Addinall, S.G. and Lutkenhaus, J. (1996). FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol. Microbiol. 22, 231-237.
Aiyar, S.E., Gaal, T., and Gourse, R.L. (2002). rRNA Promoter Activity in the Fast-Growing Bacterium Vibrio natriegens. J. Bacteriol. 184, 1349-1358.
Alavi, M. and Belas, R. (2001). Surface sensing, swarmer cell differentiation, and biofilm development. Methods Enzymol. 336, 29-40.
Alberts, B. (1998). The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291-294.
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). The cytoskeleton. In Molecular Biology of the Cell, (New York, Garland Publishing), pp. 907-982.
Alley, M.R., Maddock, J.R., and Shapiro, L. (1992). Polar localization of a bacterial chemoreceptor. Genes Dev. 6, 825-836.
Amos, W.B. and White, J.G. (2003). How the confocal laser scanning microscope entered biological research. Biol. Cell 95, 335-342.
Amy, P.S., Pauling, C., and Morita, R.Y. (1983). Recovery from nutrient starvation by a marine Vibrio sp. Appl. Envir. Microbiol. 45, 1685-1690.
Anderson, G.G., Dodson, K.W., Hooton, T.M., and Hultgren, S.J. (2004). Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol. 12, 424-430.
Andreu, J.M., Oliva, M.A., and Monasterio, O. (2002). Reversible unfolding of FtsZ cell division proteins from archaea and bacteria: comparison with eukaryotic tubulin folding and assembly. J. Biol. Chem. 277, 43262-43270.
Andrews, P.D., Harper, I.S., and Swedlow, J.R. (2002). To 5D and beyond: quantitative fluorescence microscopy in the postgenomic era. Traffic 3, 29-36.
Ang, S., Lee, C.Z., Peck, K., Sindici, M., Matrubutham, U., Gleeson, M.A., and Wang, J.T. (2001). Acid-induced gene expression in Helicobacter pylori: study in genomic scale by microarray. Infect. Immun. 69, 1679-1686.
Ansaruzzaman, M., Lucas, M., Deen, J.L., Bhuiyan, N.A., Wang, X.Y., Safa, A., Sultana, M., Chowdhury, A., Nair, G.B., Sack, D.A., von Seidlein, L., Puri, M.K., Ali, M., Chaignat, C.L., Clemens,J.D., and Barreto,A. (2005). Pandemic serovars (O3:K6 and O4:K68) of Vibrio parahaemolyticus associated with diarrhea in Mozambique: spread of the pandemic into the African continent. J. Clin. Microbiol. 43, 2559-2562.
Atlas, R.M. (2004). Handbook of Microbiological Media. (Boca Raton, FL, USA: CRC Press).
Ausmees, N. and Jacobs-Wagner, C. (2003). Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu. Rev. Microbiol. 57, 225-247.
Ausmees, N., Kuhn, J.R., and Jacobs-Wagner, C. (2003). The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115, 705-713.
Baker, R.M., Singleton, F.L., and Hood, M.A. (1983). Effects of nutrient deprivation on Vibrio cholerae. Appl. Envir. Micreobiol. 46, 930-940.
Ballesteros, M., Kusano, S., Ishihama, A., and Vicente, M. (1998). The ftsQ1p gearbox promoter of Escherichia coli is a major sigma S-dependent promoter in the ddlB-ftsA region. Mol. Microbiol. 30, 419-430.
Bartosik, A.A. and Jagura-Burdzy, G. (2005). Bacterial chromosome segregation. Acta Biochim. Pol. 52, 1-34.
Bassler, B.L., Greenberg, E.P., and Stevens, A.M. (1997). Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 179, 4043-4045.
Bates, T.C. and Oliver, J.D. (2004). The viable but nonculturable state of Kanagawa positive and negative strains of Vibrio parahaemolyticus. J. Microbiol. 42, 74-79.
Bavoil, P.M., Hsia, R.c., and Ojcius, D.M. (2000). Closing in on Chlamydia and its intracellular bag of tricks. Microbiology 146, 2723-2731.
Begg, K.J. and Donachie, W.D. (1985). Cell shape and division in Escherichia coli: experiments with shape and division mutants. J. Bacteriol. 163, 615-622.
Ben-Yehuda, S. and Losick, R. (2002). Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257-266.
Ben-Yehuda, S., Fujita, M., Liu, X.S., Gorbatyuk, B., Skoko, D., Yan, J., Marko, J.F., Liu, J.S., Eichenberger, P., Rudner, D.Z., and Losick, R. (2005). Defining a centromere-like element in Bacillus subtilis by Identifying the binding sites for the chromosome-anchoring protein RacA. Mol. Cell 17, 773-782.
Bermudes, D., Hinkle, G., and Margulis, L. (1994). Do prokaryotes contain microtubules? Microbiol. Mol. Biol. Rev. 58, 387-400.
Bertrand, S., Barthelemy, I., Oliva, M.A., Carrascosa, J.L., Andreu, J.M., and Valpuesta, J.M. (2005). Folding, stability and polymerization properties of FtsZ chimeras with inserted tubulin loops involved in the interaction with the cytosolic chaperonin CCT and in microtubule formation. J. Mol. Biol. 346, 319-330.
Bi, E. and Lutkenhaus, J. (1993). Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J. Bacteriol. 175, 1118-1125.
Bi, E.F. and Lutkenhaus, J. (1991). FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161-164.
Biondi, E.G., Marini, F., Altieri, F., Bonzi, L., Bazzicalupo, M., and del Gallo, M. (2004). Extended phenotype of an mreB-like mutant in Azospirillum brasilense. Microbiol. 150, 2465-2474.
Blake, P.A., Weaver, R.E., and Hollis, D.G. (1980). Diseases of Humans (Other than Cholera) Caused by Vibrios. Annu. Rev. Microbiol. 34, 341-367.
Bolhuis, A., Venema, G., Quax, W.J., Bron, S., and van Dijl, J.M. (1999). Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis. J. Biol. Chem. 274, 24531-24538.
Bork, P. and Serrano, L. (2005). Towards cellular systems in 4D. Cell 121, 507-509.
Bork, P., Sander, C., and Valencia, A. (1992). An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and Hsp70 heat shock proteins. Proc. Natl. Acad. Sci. USA 89, 7290-7294.
Bramhill, D. and Thompson, C.M. (1994). GTP-Dependent Polymerization of Escherichia coli FtsZ protein to form tubules. Proc. Natl. Acad. Sci. USA 91, 5813-5817.
Brehm-Stecher, B.F. and Johnson, E.A. (2004). Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538-559.
Bullock, W.O., Fernandez, J.M., and Short, J.M. (1987). XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. BioTechniques 5, 376-378.
Burger, A., Sichler, K., Kelemen, G., Buttner, M., and Wohlleben, W. (2000). Identification and characterization of the mre gene region of Streptomyces coelicolor A3(2). Mol. Gen. Genet. 263, 1053-1060.
Burns, R. (1998). Synchronized division proteins. Nature 391, 121, 123.
Butland, G., Peregrin-Alvarez, J.M., Li, J., Yang, W., Yang, X., Canadien, V., Starostine, A., Richards, D., Beattie, B., Krogan, N., Davey, M., Parkinson, J., Greenblatt, J., and Emili, A. (2005). Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531-537.
Cabeen, M.T. and Jacobs-Wagner, C. (2005). Bacterial cell shape. Nat. Rev. Microbiol. 3, 601-610.
Carballido-Lopez, R. and Errington, J. (2003). The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev. Cell 4, 19-28.
Chen, C.Y., Wu, K.M., Chang, Y.C., Chang, C.H., Tsai, H.C., Liao, T.L., Liu, Y.M., Chen, H.J., Shen, A.B.-T., Li, J.C., Su, T.L., Shao, C.P., Lee, C.T., Hor, L.I., and Tsai, S.F. (2003). Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13, 2577-2587.
Chowdhury, N.R., Chakraborty, S., Ramamurthy, T., Nishibuchi, M., Yamasaki, S., Takeda, Y., and Nair, G.B. (2000). Molecular evidence of clonal Vibrio parahaemolyticus pandemic strains. Emerg. Infect. Dis. 6, 631-636.
Chowdhury, S., Smith, K.W., and Gustin, M.C. (1992). Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J. Cell Biol. 118, 561-571.
Chung, K.M., Hsu, H.H., Govindan, S., and Chang, B.Y. (2004). Transcription regulation of ezrA and its effect on cell division of Bacillus subtilis. J. Bacteriol. 186, 5926-5932.
Clark, C.A., Purins, L., Kaewrakon, P., and Manning, P.A. (1997). VCR repetitive sequence elements in the Vibrio cholerae chromosome constitute a mega-integron. Mol. Microbiol. 26, 1137-1138.
Cooper, S. (2001). Helical growth and the curved shape of Vibrio cholerae. FEMS Microbiol. Lett. 198, 123-124.
Corbin, B.D., Geissler, B., Sadasivam, M., and Margolin, W. (2004). Z-ring-independent interaction between a subdomain of FtsA and late septation proteins as revealed by a polar recruitment assay. J. Bacteriol. 186, 7736-7744.
Corbin, R.W., Paliy, O., Yang, F., Shabanowitz, J., Platt, M., Lyons, C.E., Jr., Root, K., McAuliffe, J., Jordan, M.I., Kustu, S., Soupene, E., and Hunt, D.F. (2003). Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc. Natl. Acad. Sci. USA 100, 9232-9237.
Cordell, S.C., Robinson, E.J.H., and Lowe, J. (2003). Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc. Natl. Acad. Sci. USA 100, 7889-7894.
Costa, C.S. and Anton, D.N. (1999). Conditional lethality of cell shape mutations of Salmonella typhimurium: rodA and mre mutants are lethal on solid but not in liquid medium. Curr. Microbiol. 38, 137-142.
Dai, K. and Lutkenhaus, J. (1991). ftsZ is an essential cell division gene in Escherichia coli. J. Bacteriol. 173, 3500-3506.
Dai, K. and Lutkenhaus, J. (1992). The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J. Bacteriol. 174, 6145-6151.
Dandekar, T., Snel, B., Huynen, M., and Bork, P. (1998). Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324-328.
Daniel, R.A. and Errington, J. (2003). Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113, 767-776.
Daniels, N.A., MacKinnon, L., Bishop, R., Altekruse, S., Ray, B., Hammond, R.M., Thompson, S., Wilson, S., Bean, N.H., Griffin, P.M., and Slutsker, L. (2000). Vibrio parahaemolyticus infections in the United States, 1973-1998. J Infect Dis 181, 1661-1666.
Davis, T.N. (2004). Protein localization in proteomics. Curr. Opin. Chem. Biol. 8, 49-53.
de Boer, P., Crossley, R., and Rothfield, L. (1992). The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359, 254-256.
de Boer, P.A., Crossley, R.E., and Rothfield, L.I. (1989). A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in Escherichia coli. Cell 56, 641-649.
Defeu Soufo, H.J. and Graumann, P.L. (2003). Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr. Biol. 13, 1916-1920.
Defeu Soufo, H.J. and Graumann, P.L. (2004). Dynamic movement of actin-like proteins within bacterial cells. EMBO Reports 5, 789-794.
Deinum, J., Wallin, M., and Jensen, P.W. (1985). The binding of Ruthenium red to tubulin. Biochim. Biophys. Acta 838, 197-205.
DeLisa, M.P., Wu, C.F., Wang, L., Valdes, J.J., and Bentley, W.E. (2001). DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J. Bacteriol. 183, 5239-5247.
Delley, P.A. and Hall, M.N. (1999). Cell wall Stress depolarizes cell growth via hyperactivation of RHO1. J. Cell Biol. 147, 163-174.
den Blaauwen, T., Aarsman, M.E.G., Vischer, N.O.E., and Nanninga, N. (2003). Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Mol. Microbiol. 47, 539-547.
Desai, A. and Mitchison, T.J. (1998). Tubulin and FtsZ structures: functional and therapeutic implications. Bioessays 20, 523-527.
Dewar, S.J. and Donachie, W.D. (1993). Antisense transcription of the ftsZ-ftsA gene junction inhibits cell division in Escherichia coli. J. Bacteriol. 175, 7097-7101.
Dewar, S.J. and Dorazi, R. (2000). Control of division gene expression in Escherichia coli. FEMS Microbiol. Lett 187, 1-7.
Din, N., Quardokus, E.M., Sackett, M.J., and Brun, Y.V. (1998). Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol. Microbiol. 27, 1051-1063.
Divakaruni, A. and Gober, J. Molecular interaction between MreC and the penicillin binding proteins of Caulobacter cresentus. abstract from the 104th general American Society for Microbiology meeting . 2004.
Dobrzynski, J.K., Sternlicht, M.L., Peng, I., Farr, G.W., and Sternlicht, H. (2000). Evidence that beta-tubulin induces a conformation change in the cytosolic chaperonin which stabilizes binding: implications for the mechanism of action. Biochem. 39, 3988-4003.
Doi, M., Wachi, M., Ishino, F., Tomioka, S., Ito, M., Sakagami, Y., Suzuki, A., and Matsuhashi, M. (1988). Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells. J. Bacteriol. 170, 4619-4624.
Doolittle, R.F. and York, A.L. (2002). Bacterial actins? an evolutionary perspective. Bioessays 24, 293-296.
Downing, K.H. (2000). Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu. Rev. Cell Dev. Biol. 16, 89-111.
Draper, G.C. and Gober, J.W. (2002). Bacterial chromosome segregation. Annu. Rev. Microbiol. 56, 567-597.
Dreger, M. (2003). Proteome analysis at the level of subcellular structures. Eur. J. Biochem. 270, 589-599.
Driks, A. and Losick, R. (1991). Compartmentalized expression of a gene under the control of sporulation transcription factor σE in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 88, 9934-9938.
Duncan, L., Alper, S., Arigoni, F., Losick, R., and Stragier, P. (1995). Activation of cell-specific transcription by a serine phosphatase at the site of aymmetric dvision. Science 270, 641-644.
Dunn, .Y., Melville, .W., and Frydman, . (2001). Cellular substrates of the eukaryotic chaperonin TRiC/CCT. J. Struct. Biol. 135, 176-184.
Dziejman, M., Serruto, D., Tam, V.C., Sturtevant, D., Diraphat, P., Faruque, S.M., Rahman, M.H., Heidelberg, J.F., Decker, J., Li, L., Montgomery, K.T., Grills, G., Kucherlapati, R., and Mekalanos, J.J. (2005). Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc. Natl. Acad. Sci. USA 102, 3465-3470.
Egan, E.S. and Waldor, M.K. (2003). Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell 114, 521-530.
Egan, E.S., Fogel, M.A., and Waldor, M.K. (2005). Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol. Microbiol. 56, 1129-1138.
Egan, E.S., Lobner-Olesen, A., and Waldor, M.K. (2004). Synchronous replication initiation of the two Vibrio cholerae chromosomes. Curr. Biol. 14, R501-R502.
Egelman, E.H. (2001). Molecular evolution: actin's long lost relative found. Curr. Biol. 11, R1022-R1024.
Egelman, E.H. (2003a). Actin's prokaryotic homologs. Curr. Opin. Struct. Biol. 13, 244-248.
Egelman, E.H. (2003b). A tale of two polymers: new insights into helical filaments. Nat. Rev. Mol. Cell. Biol. 4, 621-630.
Eils, R. and Athale, C. (2003). Computational imaging in cell biology. J. Cell Biol. 161, 477-481.
Elowitz, M.B., Surette, M.G., Wolf, P.E., Stock, J.B., and Leibler, S. (1999). Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181, 197-203.
Engelberg-Kulka, H. and Hazan, R. (2003). Cannibals defy starvation and avoid sporulation. Science 301, 467-468.
Erickson, H.P. (1995). FtsZ, a prokaryotic homolog of tubulin? Cell 80, 367-370.
Erickson, H.P. (1997). FtsZ, a tubulin homologue in prokaryote cell division. Trends Cell Biol. 7, 362-367.
Erickson, H.P. (1998). Atomic structures of tubulin and FtsZ. Trends Cell Biol 8, 133-137.
Erickson, H.P. (2000). Dynamin and FtsZ: missing links in mitochondrial and bacterial division. J. Cell Biol. 148, 1103-1106.
Erickson, H.P. (2001a). The FtsZ protofilament and attachment of ZipA-structural constraints on the FtsZ power stroke. Curr. Opin. Cell Biol. 13, 55-60.
Erickson, H.P. (2001b). Cytoskeleton: Evolution in bacteria. Nature 413, 30.
Errington, J. (2003a). Dynamic proteins and a cytoskeleton in bacteria. Nat. Cell Biol. 5, 175-178.
Errington, J. (2003b) The bacterial actin cytoskeleton. ASM News 69, 608-614.
Errington, J., Daniel, R.A., and Scheffers, D.J. (2003). Cytokinesis in Bacteria. Microbiol. Mol. Biol. Rev. 67, 52-65.
Espeli, O., Nurse, P., Levine, C., Lee, C., and Marians, K.J. (2003). SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli. Mol. Microbiol. 50, 495-509.
Esue, O., Cordero, M., Wirtz, D., and Tseng, Y. (2005). The assembly of MreB, a prokaryotic homolog of actin. J. Biol. Chem. 280, 2628-2635.
Faguy, D.M. and Doolittle, W.F. (1998). Cytoskeletal proteins: the evolution of cell division. Curr. Biol. 8, R338-R341.
Farmer III, J.J. and Hickman-Brenner, F.W. (2001). The Genera Vibrio and Photobacterium. In The Prokaryotes; an Evolving Electronic Resource for the Microbiological Community, M.M. Dworkin, S. Falkow, E. Rosenberg, S. Karl-Heinz, and E. Stackebrandt, eds. (New York: Springer-Verlag).
Fawcett, P., Eichenberger, P., Losick, R., and Youngman, P. (2000). The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 97, 8063-8068.
Fenteany, G. and Zhu, S. (2003). Small-molecule inhibitors of actin dynamics and cell motility. Curr. Top. Med. Chem. 3, 593-616.
Fernandez de Henestrosa, A.R., Ogi, T., Aoyagi, S., Chafin, D., Hayes, J.J., Ohmori, H., and Woodgate, R. (2000). Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol. Microbiol. 35, 1560-1572.
Feucht, A., Evans, L., and Errington, J. (2003). Identification of sporulation genes by genome-wide analysis of the σE regulon of Bacillus subtilis. Microbiol. 149, 3023-3034.
Fiebig, A. and Theriot, J.A. (2004). Bacteria make tracks to the pole. Proc. Natl. Acad. Sci. USA 101, 8510-8511.
Figge, R.M., Divakaruni, A.V., and Gober, J.W. (2004). MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol. Microbiol. 51, 1321-1332.
Flardh, K. (2003). Growth polarity and cell division in Streptomyces. Curr. Opin. Microbiol. 6, 564-571.
Fluit, A.C. and Schmitz, F.J. (2004). Resistance integrons and super-integrons. Clin. Microbiol. Infect. 10, 272-288.
Flynn, J.M., Neher, S.B., Kim, Y.I., Sauer, R.T., and Baker, T.A. (2003). Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11, 671-683.
Fogel, M.A. and Waldor, M.K. (2005). Distinct segregation dynamics of the two Vibrio cholerae chromosomes. Mol. Microbiol. 55, 125-136.
Formstone, A. and Errington, J. (2005). A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis. Mol. Microbiol. 55, 1646-1657.
Fraser, G.M. and Hughes, C. (1999). Swarming motility. Curr. Opin. Microbiol. 2, 630-635.
Fung, D.C. and Theriot, J.A. (1998). Imaging techniques in microbiology. Curr. Opin. Microbiol. 1, 346-351.
Garner, E.C., Campbell, C.S., and Mullins, R.D. (2004). Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science 306, 1021-1025.
Garrido, T., Sanchez, M., Palacios, P., Aldea, M., and Vicente, M. (1993). Transcription of ftsZ oscillates during the cell cycle of Escherichia coli. EMBO J. 12, 3957-3965.
Gerdes, K., Moller-Jensen, J., and Jensen, R.B. (2000). Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol. 37, 455-466.
Gerdes, K., Moller-Jensen, J., Ebersbach, G., Kruse, T., and Nordstrom, K. (2004). Bacterial mitotic machineries. Cell 116, 359-366.
Gerlich, D. and Ellenberg, J. (2003). 4D imaging to assay complex dynamics in live specimens. Nat. Cell. Biol. Suppl., S14-S19.
Gestwicki, J.E., Lamanna, A.C., Harshey, R.M., McCarter, L.L., Kiessling, L.L., and Adler, J. (2000). Evolutionary conservation of methyl-accepting chemotaxis protein location in bacteria and archaea. J. Bacteriol. 182, 6499-6502.
Gilson, P.R. and Beech, P.L. (2001). Cell division protein FtsZ: running rings around bacteria, chloroplasts and mitochondria. Res Microbiol 152, 3-10.
Gitai, Z. (2005). The new bacterial cell biology: moving parts and subcellular architecture. Cell 120, 577-586.
Gitai, Z., Dye, N., and Shapiro, L. (2004). An actin-like gene can determine cell polarity in bacteria. Proc. Natl. Acad. Sci. USA 101, 8643-8648.
Gitai, Z., Dye, N.A., Reisenauer, A., Wachi, M., and Shapiro, L. (2005a). MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120, 329-341.
Gitai, Z., Thanbichler, M., and Shapiro, L. (2005b). The choreographed dynamics of bacterial chromosomes. Trends Microbiol. 13, 221-228.
Glaser, P., Sharpe, M.E., Raether, B., Perego, M., Ohlsen, K., and Errington, J. (1997). Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 11, 1160-1168.
Goldberg, M.B., Barzu, O., Parsot, C., and Sansonetti, P.J. (1993). Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. J. Bacteriol. 175, 2189-2196.
Goldberg, M.B., Theriot, J.A., and Sansonetti, P.J. (1994). Regulation of surface presentation of IcsA, a Shigella protein essential to intracellular movement and spread, is growth phase dependent. Infect. Immun. 62, 5664-5668.
Golding, I. and Cox, E.C. (2004). RNA dynamics in live Escherichia coli cells. Proc. Natl. Acad. Sci. USA 101, 11310-11315.
Gonzalez, J.M., Jimenez, M., Velez, M., Mingorance, J., Andreu, J.M., Vicente, M., and Rivas, G. (2003). Essential cell division protein FtsZ assembles into one monomer-thick ribbons under conditions resembling the crowded intracellular environment. J. Biol. Chem. 278, 37664-37671.
Gonzalez-Pastor, J.E., Hobbs, E.C., and Losick, R. (2003). Cannibalism by sporulating bacteria. Science 301, 510-513.
Gordon, G.S., Sitnikov, D., Webb, C.D., Teleman, A., Straight, A., Losick, R., Murray, A.W., and Wright, A. (1997). Chromosome and low copy plasmid segregation in Escherichia coli: visual evidence for distinct mechanisms. Cell 90, 1113-1121.
Gourlay, C.W. and Ayscough, K.R. (2005). Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J. Cell Sci. 118, 2119-2132.
Gourlay, C.W., Carpp, L.N., Timpson, P., Winder, S.J., and Ayscough, K.R. (2004). A role for the actin cytoskeleton in cell death and aging in yeast. J. Cell Biol. 164, 803-809.
Grantcharova, N., Lustig, U., and Flardh, K. (2005). Dynamics of FtsZ assembly during sporulation in Streptomyces coelicolor A3(2). J. Bacteriol. 187, 3227-3237.
Graumann, P.L. (2004). Cytoskeletal elements in bacteria. Curr. Opin. Microbiol. 7, 565-571.
Graumann, P.L. and Defeu Soufo, H.J. (2004). An intracellular actin motor in bacteria? Bioessays 26, 1209-1216.
Greenbaum, D., Luscombe, N.M., Jansen, R., Qian, J., and Gerstein, M. (2001). Interrelating different types of genomic data, from proteome to secretome: oming in on function. Genome Res. 11, 1463-1468.
Gueiros-Filho, F.J. and Losick, R. (2002). A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev. 16, 2544-2556.
Guerrero-Barrera, A.L., Garcia-Cuellar, C.M., Villalba, J.D., Segura-Nieto, M., Lojero, C., Reyes, M.E., Hernandez, J.M., Garcia, R.M., and de la Garza, M. (1996). Actin-related proteins in Anabaena spp. and Escherichia coli. Microbiol. 142, 1133-1140.
Haeusser, D.P., Schwartz, R.L., Smith, A.M., Oates, M.E., and Levin, P.A. (2004). EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ. Mol. Microbiol. 52, 801-814.
Hale, C.A., Meinhardt, H., and de Boer, P.A.J. (2001). Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J. 20, 1563-1572.
Hall, R.M. and Stokes, H.W. (2004). Integrons or super integrons? Microbiol. 150, 3-4.
Haney, S.A., Glasfeld, E., Hale, C., Keeney, D., He, Z., and de Boer, P. (2001). Genetic analysis of the Escherichia coli FtsZ-ZipA interaction in the yeast two-hybrid system: characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J. Biol. Chem. 276, 11980-11987.
Hardies, S.C., Comeau, A.M., Serwer, P., and Suttle, C.A. (2003). The complete sequence of marine bacteriophage VpV262 infecting Vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment. Virol. 310, 359-371.
He, S.Y., Nomura, K., and Whittam, T.S. (2004). Type III protein secretion mechanism in mammalian and plant pathogens. Biochem. Biophys. Acta 1694, 181-206.
Heidelberg, J.F., Eisen, J.A., Nelson, W.C., Clayton, R.A., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Peterson, J.D., Umayam, L., Gill, S.R., Nelson, K.E., Read, T.D., Tettelin, H., Richardson, D., Ermolaeva, M.D., Vamathevan, J., Bass, S., Qin, H., Dragoi, I., Sellers, P., McDonald, L., Utterback, T., Fleishmann, R.D., Nierman, W.C., White, O., Salzberg, S.L., Smith, H.O., Colwell, R.R., Mekalanos, J.J., Venter, J.C., and Fraser, C.M. (2000). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477-483.
Henke, J.M. and Bassler, B.L. (2004). Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J. Bacteriol. 186, 3794-3805.
Henning, U., Rehn, K., Braun, V., and Hohn, B. (1972). Cell envelope and shape of Escherichia coli K12. Properties of a temperature-sensitive rod mutant. Eur. J. Biochem. 26, 570-586.
Henry, T., Garcia-Del, P., and Gorvel, J.P. (2005). Identification of Salmonella functions critical for bacterial cell division within eukaryotic cells. Mol. Microbiol. 56, 252-267.
Holtje, J.V. (1998). Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181-203.
Holtzendorff, J., Partensky, F., Jacquet, S., Bruyant, F., Marie, D., Garczarek, L., Mary, I., Vaulot, D., and Hess, W.R. (2001). Diel expression of cell cycle-related genes in synchronized cultures of Prochlorococcus sp. Strain PCC 9511. J. Bacteriol. 183, 915-920.
Horwich, A.L., Weber-Ban, E.U., and Finley, D. (1999). Chaperone rings in protein folding and degradation. Proc. Natl. Acad. Sci. USA 96, 11033-11040.
Howard, J. (2001). Mechanics of motor proteins and the cytoskeleton. (Sunderland, Mass.: Sinauer Associates).
Hu, Z. and Lutkenhaus, J. (1999). Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol. 34, 82-90.
Hu, Z. and Lutkenhaus, J. (2001). Topological regulation of cell division in Escherichia coli: spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol. Cell 7, 1337-1343.
Hu, Z., Gogol, E.P., and Lutkenhaus, J. (2002). Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc. Natl. Acad. Sci. USA 99, 6761-6766.
Ishino, F., Park, W., Tomioka, S., Tamaki, S., Takase, I., Kunugita, K., Matsuzawa, H., Asoh, S., Ohta, T., and Spratt, B.G. (1986). Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and rodA protein. J. Biol. Chem. 261, 7024-7031.
Iwai, N., Nagai, K., and Wachi, M. (2002). Novel S-benzylisothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shape-determining protein(s) other than penicillin-binding protein 2. Biosci. Biotechnol. Biochem. 66, 2658-2662.
James, G.A., Korber, D.R., Caldwell, D.E., and Costerton, J.W. (1995). Digital image analysis of growth and starvation responses of a surface- colonizing Acinetobacter sp. J. Bacteriol. 177, 907-915.
Janakiraman, A. and Goldberg, M.B. (2004). Recent advances on the development of bacterial poles. Trends Microbiol. 12, 518-525.
Janion, C. (2001). Some aspects of the SOS response system - a critical survey. Acta Biochim. Pol. 48, 599-610.
Jaques, S., Kim, Y.K., and McCarter, L.L. (1999). Mutations conferring resistance to phenamil and amiloride, inhibitors of sodium-driven motility of Vibrio parahaemolyticus. Proc. Natl. Acad. Sci. USA 96, 5740-5745.
Jiang, X. and Chai, T.J. (1996). Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells. Appl. Environ. Microbiol. 62, 1300-1305.
Johnston, D.S. (2005). Moving messages: the intracellular localization of mRNAs. Nat. Rev. Mol. Cell Biol.
Jones, L.J., Carballido-Lopez, R., and Errington, J. (2001). Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913-922.
Joseleau-Petit, D., Vinella, D., and D'Ari, R. (1999). Metabolic alarms and cell division in Escherichia coli. J. Bacteriol. 181, 9-14.
Joseph, S.W., Colwell, R.R., and Kaper, J.B. (1982). Vibrio parahaemolyticus and related halophilic Vibrios. Crit. Rev. Microbiol. 10, 77-124.
Justice, S.S., Garcia-Lara, J., and Rothfield, L.I. (2000). Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery. Mol. Microbiol. 37, 410-423.
Justice, S.S., Hung, C., Theriot, J.A., Fletcher, D.A., Anderson, G.G., Footer, M.J., and Hultgren, S.J. (2004). Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl. Acad. Sci. USA 101, 1333-1338.
Kabsch, W. and Holmes, K.C. (1995). The actin fold. FASEB J. 9, 167-174.
Kahng, L.S. and Shapiro, L. (2003). Polar localization of replicon origins in the multipartite genomes of Agrobacterium tumefaciens and Sinorhizobium meliloti. J. Bacteriol. 185, 3384-3391.
Karpova, T.S., McNally, J.G., Moltz, S.L., and Cooper, J.A. (1998). Assembly and function of the actin cytoskeleton of yeast: relationships between cables and patches. J. Cell Biol. 142, 1501-1517.
Kawagishi, I., Imagawa, M., Imae, Y., McCarter, L., and Homma, M. (1996). The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol. Microbiol. 20, 693-699.
Kellenberger, E. (1996). Structure and function at the subcellular level. In Escherichia coli and Salmonella: Cellular and Molecular Biology, F.C. Neidhardt, R. Curtiss III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, eds. (Washington, D.C.: ASM Press), pp. 17-28.
Kelly, A.J., Sackett, M.J., Din, N., Quardokus, E., and Brun, Y.V. (1998). Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev. 12, 880-893.
Kirov, S.M. (2003). Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis. FEMS Microbiol. Lett. 224, 151-159.
Kjelleberg, S., Albertson, N., Flardh, K., Holmquist, L., Jouper-Jaan, A., Marouga, R., Ostling, J., Svenblad, B., and Weichart, D. (1993). How do non-differentiating bacteria adapt to starvation? Antonie Leeuwenhoek 63, 333-341.
Klappenbach, J.A., Dunbar, J.M., and Schmidt, T.M. (2000). rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66, 1328-1333.
Kline-Smith, S.L. and Walczak, C.E. (2004). Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol. Cell 15, 317-327.
Kline-Smith, S.L., Sandall, S., and Desai, A. (2005). Kinetochore-spindle microtubule interactions during mitosis. Curr. Opin. Cell Biol 17, 35-46.
Kobayashi, K., Ogura, M., Yamaguchi, H., Yoshida, K.I., Ogasawara, N., Tanaka, T., and Fujita, Y. (2001). Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J. Bacteriol. 183, 7365-7370.
Koch, A.L. (1988). Biophysics of bacterial walls viewed as stress-bearing fabric. Microbiol. Rev. 52, 337-353.
Koch, A.L. (1991). The wall of bacteria serves the roles that mechano-proteins do in eukaryotes. FEMS Microbiol. Rev. 8, 15-25.
Koch, A.L. (1996). What size should a bacterium be? A question of scale. Annu. Rev. Microbiol. 50, 317-348.
Kocks, C., Hellio, R., Gounon, P., Ohayon, H., and Cossart, P. (1993). Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly. J. Cell Sci. 105, 699-710.
Koga, T., Katagiri, T., Hori, H., and Takumi, K. (2002). Alkaline adaptation induces cross-protection against some environmental stresses and morphological change in Vibrio parahaemolyticus. Microbiol. Res. 157, 249-255.
Kolter, R., Siegele, D.A., and Tormo, A. (1993). The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47, 855-874.
Kreis, T.E. and Vale, R.E. (1999). Guidebook to the Cytoskeletal and Motor Proteins. (New York: Oxford University Press).
Kruse, T., Bork-Jensen, J., and Gerdes, K. (2005). The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol. 55, 78-89.
Kruse, T., Moller-Jensen, J., Lobner-Olesen, A., and Gerdes, K. (2003). Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J. 22, 5283-5292.
Kwak, J., Dharmatilake, A.J., Jiang, H., and Kendrick, K.E. (2001). Differential Regulation of ftsZ Transcription during Septation of Streptomyces griseus. J. Bacteriol. 183, 5092-5101.
Larrainzar, E., Gara, F., and Morrissey, J.P. (2005). Applications of autofluorescent proteins for in situ studies in microbial ecology. Annu. Rev. Microbiol. 59, 257-277.
Lee, J.C. and Stewart, G.C. (2003). Essential nature of the mreC determinant of Bacillus subtilis. J. Bacteriol. 185, 4490-4498.
Lee, J.C., Cha, J.H., Zerbv, D.B., and Stewart, G.C. (2003). Heterospecific expression of the Bacillus subtilis cell shape determination genes mreBCD in Escherichia coli. Curr. Microbiol. 47, 146-152.
Levin, P.A., Kurtser, I.G., and Grossman, A.D. (1999). Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 96, 9642-9647.
Levin, P.A., Margolis, P.S., Setlow, P., Losick, R., and Sun, D. (1992). Identification of Bacillus subtilis genes for septum placement and shape determination. J. Bacteriol. 174, 6717-6728.
Lewis, K. (2000). Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64, 503-514.
Lewis, P.J. (2004). Bacterial subcellular architecture: recent advances and future prospects. Mol. Microbiol. 54, 1135-1150.
Lewis, S.A., Tian, G., Vainberg, I.E., and Cowan, N.J. (1996). Chaperonin-mediated folding of actin and tubulin. J. Cell Biol. 132, 1-4.
Li, R. and Wai, S.C. (2004). Bacterial cell polarity: a “swarmer-stalked” tale of actin. Trends Cell Biol. 14, 532-536.
Lippincott, S., tan-Bonnet, N., and Patterson, G.H. (2003). Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. Suppl, S7-14.
Lippincott-Schwartz, J. and Patterson, G.H. (2003). Development and use of fluorescent protein markers in living cells. Science 300, 87-91.
Lockett, S.J. (1999). Three-dimensional image visualization and analysis. In Current Protocols in Cytometry, J.P. Robinson, Z. Darzynkiewicz, J. Dobrucki, W.C. Hyun, A. Orfao, and P.S. Rabinovitch, eds. (New York: John Wiley & Sons, Inc.), p. 10.10.1-10.10.13.
Losick, R. and Shapiro, L. (1999). Changing views on the nature of the bacterial cell: from biochemistry to cytology. J. Bacteriol. 181, 4143-4145.
Lowe, J. (1998). Crystal structure determination of FtsZ from Methanococcus jannaschii. J. Struct. Biol. 124, 235-243.
Lowe, J. and Amos, L.A. (1998). Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203-206.
Lozano-Leon, A., Torres, J., Osorio, C.R., and Martinez-Urtaza, J. (2003). Identification of tdh-positive Vibrio parahaemolyticus from an outbreak associated with raw oyster consumption in Spain. FEMS Microbiol. Lett. 226, 281-284.
Lu, C., Stricker, J., and Erickson, H.P. (1998). FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima-quantitation, GTP hydrolysis, and assembly. Cell Motil. Cytoskeleton 40, 71-86.
Lucet, I., Feucht, A., Yudkin, M.D., and Errington, J. (2000). Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE. EMBO J. 19, 1467-1475.
Lutkenhaus, J. (2002). Dynamic proteins in bacteria. Curr. Opin. Microbiol. 5, 548-552.
Lybarger, S.R. and Maddock, J.R. (2001). Polarity in action: asymmetric protein localization in bacteria. J. Bacteriol. 183, 3261-3267.
Ma, X. and Margolin, W. (1999). Genetic and functional analyses of the conserved c-terminal core domain of Escherichia coli FtsZ. J. Bacteriol. 181, 7531-7544.
Ma, X., Ehrhardt, D.W., and Margolin, W. (1996). Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc. Natl. Acad. Sci. USA 93, 12998-13003.
Maddock, J.R. and Shapiro, L. (1993). Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259, 1717-1723.
Maiato, H., DeLuca, J., Salmon, E.D., and Earnshaw, W.C. (2004). The dynamic kinetochore- microtubule interface. J. Cell Sci. 117, 5461-5477.
Makino, K., Oshima, K., Kurokawa, K., Yokoyama, K., Uda, T., Tagomori, K., Iijima, Y., Najima, M., Nakano, M., Yamashita, A., Kubota, Y., Kimura, S., Yasunaga, T., Honda, T., Shinagawa, H., Hattori, M., and Iida, T. (2003). Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361, 743-749.
Makinoshima, H., Aizawa, S.I., Hayashi, H., Miki, T., Nishimura, A., and Ishihama, A. (2003). Growth phase-coupled alterations in cell structure and function of Escherichia coli. J. Bacteriol. 185, 1338-1345.
Margolin, W. (2000a). Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. Methods 20, 62-72.

Margolin, W. (2000b). Differentiation of free-living rhizobia into endosymbiotic bacteroids. In Prokaryotic Development, Y.V. Brun and L.J. Shimkets, eds. (Washington, DC: ASM Press), pp. 441-466.
Margolin, W. (2003). Bacterial division: the fellowship of the ring. Curr. Biol. 13, R16-R18.
Margolin, W. (2004). Bacterial shape: concave coiled coils curve Caulobacter. Curr. Biol. 14, R242-R244.
Margolin, W. (2005). Bacterial mitosis: actin in a new role at the origin. Curr. Biol. 15, R259-R261.
Marsh, J.W. and Taylor, R.K. (1999). Genetic and transcriptional analyses of the Vibrio cholerae mannose-sensitive hemagglutinin Type 4 pilus gene locus. J. Bacteriol. 181, 1110-1117.
Matz, M.V., Lukyanov, K.A., and Lukyanov, S.A. (2002). Family of the green fluorescent protein: journey to the end of the rainbow. Bioessays 24, 953-959.
Mayer, F., Vogt, B., and Poc, C. (1998). Immunoelectron microscopic studies indicate the existence of a cell shape preserving cytoskeleton in prokaryotes. Naturwissenschaften 85, 278-282.
Mazel, D., Dychinco, B., Webb, V.A., and Davies, J. (1998). A distinctive class of integron in the Vibrio cholerae Genome. Science 280, 605-608.
McAdams, H.H. and Shapiro, L. (2003). A bacterial cell-cycle regulatory network operating in time and space. Science 301, 1874-1877.
McCarter, L. (1999). The multiple identities of Vibrio parahaemolyticus. J. Mol. Microbiol. Biotechnol. 1, 51-57.
McCarter, L. and Silverman, M. (1989). Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus. J. Bacteriol. 171, 731-736.
McCarter, L., Hilmen, M., and Silverman, M. (1988). Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54, 345-351.
McCarter, L.L. (1998). OpaR, a Homolog of Vibrio harveyi LuxR, Controls Opacity of Vibrio parahaemolyticus. J. Bacteriol. 180, 3166-3173.
McCarter, L.L. (2001). Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65, 445-462.
McCarter, L.L. (2004). Dual flagellar systems enable motility under different circumstances. J. Mol. Microbiol. Biotechnol. 7, 18-29.
McGrath, J.L., Tardy, Y., Dewey, C.F., Jr., Meister, J.J., and Hartwig, J.H. (1998). Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophys. J. 75, 2070-2078.
McNally, J.G., Karpova, T., Cooper, J., and Conchello, J.A. (1999). Three-dimensional imaging by deconvolution microscopy. Methods 19, 373-385.
Merrell, D.S., Butler, S.M., Qadri, F., Dolganov, N.A., Alam, A., Cohen, M.B., Calderwood, S.B., Schoolnik, G.K., and Camilli, A. (2002). Host-induced epidemic spread of the cholera bacterium. Nature 417, 642-645.
Miller, E.S., Heidelberg, J.F., Eisen, J.A., Nelson, W.C., Durkin, A.S., Ciecko, A., Feldblyum, T.V., White, O., Paulsen, I.T., Nierman, W.C., Lee, J., Szczypinski, B., and Fraser, C.M. (2003). complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J. Bacteriol. 185, 5220-5233.
Minkoff, L. and Damadian, R. (1976). Actin-like properties from Escherichia coli: concept of cytotonus as the missing link between cell metabolism and the biological ion-exchange resin. J. Bacteriol. 125, 353-365.
Miyawaki, A., Sawano, A., and Kogure, T. (2003). Lighting up cells: labelling proteins with fluorophores. Nat. Cell. Biol. Suppl, S1-S7.
Mizunoe, Y., Wai, S.N., Ishikawa, T., Takade, A., and Yoshida, S. (2000). Resuscitation of viable but nonculturable cells of Vibrio parahaemolyticus induced at low temperature under starvation. FEMS Microbiol. Lett. 186, 115-120.
Mizusawa, S. and Gottesman, S. (1983). Protein degradation in Escherichia coli: The lon gene controls the stability of SulA Protein. Proc. Natl. Acad. Sci. USA 80, 358-362.
Mogk, A., Tomoyasu, T., Goloubinoff, P., Rudiger, S., Roder, D., Langen, H., and Bukau, B. (1999). Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18, 6934-6949.
Moller-Jensen, J. and Lowe, J. (2005). Increasing complexity of the bacterial cytoskeleton. Curr. Opin. Cell Biol. 17, 75-81.
Moller-Jensen, J., Borch, J., Dam, M., Jensen, R.B., Roepstorff, P., and Gerdes, K. (2003). Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. Mol. Cell 12, 1477-1487.
Moller-Jensen, J., Jensen, R.B., Lowe, J., and Gerdes, K. (2002). Prokaryotic DNA segregation by an actin-like filament. EMBO J. 21, 3119-3127.
Moran, N.A. (2002). Microbial minimalism: genome reduction in bacterial pathogens. Cell 108, 583-586.
Mori, T. and Johnson, C.H. (2001). Independence of circadian timing from cell division in cyanobacteria. J. Bacteriol. 183, 2439-2444.
Moy, F.J., Glasfeld, E., Mosyak, L., and Powers, R. (2000). Solution structure of ZipA, a crucial component of Escherichia coli cell division. Biochem. 39, 9146-9156.
Mukherjee, A. and Donachie, W.D. (1990). Differential translation of cell division proteins. J. Bacteriol. 172, 6106-6111.
Mukherjee, A. and Lutkenhaus, J. (1994). Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol. 176, 2754-2758.
Mukherjee, A., Dai, K., and Lutkenhaus, J. (1993). Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc. Natl. Acad. Sci. USA 90, 1053-1057.
Nanninga, N. (1998). Morphogenesis of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 110-129.
Nelson, W.J. (2003). Adaptation of core mechanisms to generate cell polarity. Nature 422, 766-774.
Nicholson, T.L., Olinger, L., Chong, K., Schoolnik, G., and Stephens, R.S. (2003). Global stage-specific gene regulation during the developmental cycle of Chlamydia trachomatis. J. Bacteriol. 185, 3179-3189.
Nilsen, T., Ghosh, A.S., Goldberg, M.B., and Young, K.D. (2004). Branching sites and morphological abnormalities behave as ectopic poles in shape-defective Escherichia coli. Mol. Microbiol. 52, 1045-1054.
Nogales, E. (2000). Structural insights into microtubule function. Annu. Rev. Biochem. 69, 277-302.
Nogales, E., Wolf, S.G., and Downing, K.H. (1998a). Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391, 199-203.
Nogales, E., Downing, K.H., Amos, L.A., and Lowe, J. (1998b). Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Biol. 5, 451-458.
Novitsky, J.A. and Morita, R.Y. (1976). Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl. Envir. Microbiol. 32, 617-622.
Nystrom, T. (2001). Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch. Microbiol. 176, 159-164.
Nystrom, T. (2003a). Conditional senescence in bacteria: death of the immortals. Mol. Microbiol. 48, 17-23.
Nystrom, T. (2003b). The free-radical hypothesis of aging goes prokaryotic. Cell Mol. Life Sci. 60, 1333-1341.
Nystrom, T. (2004). Stationary-phase physiology. Annu. Rev. Microbiol. 58, 161-181.
Okada, K., Iida, T., Kita-Tsukamoto, K., and Honda, T. (2005). Vibrios commonly possess two chromosomes. J. Bacteriol. 187, 752-757.
Okada, Y., Wachi, M., Hirata, A., Suzuki, K., Nagai, K., and Matsuhashi, M. (1994). Cytoplasmic axial filaments in Escherichia coli cells: possible function in the mechanism of chromosome segregation and cell division. J. Bacteriol. 176, 917-922.
Oliva, M.A., Cordell, S.C., and Lowe, J. (2004). Structural insights into FtsZ protofilament formation. Nat. Struct. Mol. Biol. 11, 1243-1250.
Oliver, S. (2000). Guilt-by-association goes global. Nature 403, 601-603.
Ostling, J., Holmquist, L., Flardh, K., Svenblad, B., Jouper-Jaan, A., and Kjelleberg, S. (1993). Starvation and recovery of Vibrios. In Starvation in Bacteria, K. Kjelleberg, ed. (New York: Plenum Press), pp. 103-127.
Palacios, P., Vicente, M., and Sanchez, M. (1996). Dependency of Escherichia coli cell-division size, and independency of nucleoid segregation on the mode and level of ftsZ expression. Mol. Microbiol. 20, 1093-1098.
Pan, T.M., Wang, T.K., Lee, C.L., Chien, S.W., and Horng, C.B. (1997). Food-borne disease outbreaks due to bacteria in Taiwan, 1986 to 1995. J. Clin. Microbiol. 35, 1260-1262.
Paradis-Bleau, C., Sanschagrin, F., and Levesque, R.C. (2005). Peptide inhibitors of the essential cell division protein FtsA. Protein Engineering, Design and Selection 18, 85-91.
Park, K.S., Ono, T., Rokuda, M., Jang, M.H., Okada, K., Iida, T., and Honda, T. (2004). Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72, 6659-6665.
Patterson, G., Day, R.N., and Piston, D. (2001). Fluorescent protein spectra. J. Cell Sci. 114, 837-838.
Paul, J.H. and Sullivan, M.B. (2005). Marine phage genomics: what have we learned? Curr. Opin. Biotechnol. 16, 299-307.
Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., and Yeates, T.O. (1999). Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96, 4285-4288.
Periago, P.M., van Schaik, W., Abee, T., and Wouters, J.A. (2002). Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 68, 3486-3495.
Peterson, J.D., Umayam, L.A., Dickinson, T., Hickey, E.K., and White, O. (2001). The comprehensive microbial resource. Nucl. Acids Res. 29, 123-125.
Petronczki, M., Siomos, M.F., and Nasmyth, K. (2003). Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423-440.
Philippe, N., Alcaraz, J.P., Coursange, E., Geiselmann, J., and Schneider, D. (2004). Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51, 246-255.
Phillips, G.J. (2001). Green fluorescent protein - a bright idea for the study of bacterial protein localization. FEMS Microbiol. Lett. 204, 9-18.
Pichoff, S. and Lutkenhaus, J. (2001). Escherichia coli division inhibitor MinCD blocks septation by preventing Z-ring formation. J. Bacteriol. 183, 6630-6635.
Pichoff, S. and Lutkenhaus, J. (2002). Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J. 21, 685-693.
Pla, J., Sanchez, M., Palacios, P., Vicente, M., and Aldea, M. (1991). Preferential cytoplasmic location of FtsZ, a protein essential for Escherichia coli septation. Mol. Microbiol. 5, 1681-1686.
Pogliano, J. (2002). Dynamic cellular location of bacterial plasmids. Curr. Opin. Microbiol. 5, 586-590.
Pogliano, J., Osborne, N., Sharp, M.D., Abanes-De Mello, A., Perez, A., Sun, Y.L., and Pogliano, K. (1999). A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31, 1149-1159.
Pogliano, K., Harry, E., and Losick, R. (1995). Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Mol. Microbiol. 18, 459-470.
Pollard, T.D. and Borisy, G.G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-465.
Pollard, T.D., Blanchoin, L., and Mullins, R.D. (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545-576.
Popham, D.L. and Young, K.D. (2003). Role of penicillin-binding proteins in bacterial cell morphogenesis. Curr. Opin. Microbiol. 6, 594-599.
Pruyne, D. and Bretscher, A. (2000). Polarization of cell growth in yeast. J Cell Sci 113, 571-585.
Pugsley, A.P. and Buddelmeijer, N. (2004). Traffic spotting: poles apart. Mol. Microbiol. 53, 1559-1562.
Quardokus, E., Din, N., and Brun, Y.V. (1996). Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter. Proc. Natl. Acad. Sci. USA 93, 6314-6319.
Rajendran, L. and Simons, K. (2005). Lipid rafts and membrane dynamics. J. Cell Sci. 118, 1099-1102.
Raskin, D.M. and de Boer, P.A. (1997). The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in Escherichia coli. Cell 91, 685-694.
Raskin, D.M. and de Boer, P.A. (1999a). Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 4971-4976.
Raskin, D.M. and de Boer, P.A.J. (1999b). MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J. Bacteriol. 181, 6419-6424.
RayChaudhuri, D. and Park, J.T. (1992). Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359, 251-254.
RayChaudhuri, D., Gordon, G.S., and Wright, A. (2000). How does a bacterium find its middle? Nat. Struct. Biol. 7, 997-999.
RayChaudhuri, D., Gordon, G.S., and Wright, A. (2001). Protein acrobatics and bacterial cell polarity. Proc. Natl. Acad. Sci. USA 98, 1332-1334.
Rivas, G., Lopez, A., Mingorance, J., Ferrandiz, M.J., Zorrilla, S., Minton, A.P., Vicente, M., and Andreu, J.M. (2000). Magnesium-induced linear self-association of the FtsZ bacterial cell division protein monomer: the primary steps for FtsZ assembly. J. Biol. Chem. 275, 11740-11749.
Rivas, G., Fernandez, J.A., and Minton, A.P. (2001). Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: Indefinite linear self-association of bacterial cell division protein FtsZ. Proc. Natl. Acad. Sci. USA 98, 3150-3155.
Rizzuto, R., Carrington, W., and Tuft, R.A. (1998). Digital imaging microscopy of living cells. Trends Cell Biol. 8, 288-292.
Robinow, C. and Kellenberger, E. (1994). The bacterial nucleoid revisited. Microbiol. Rev. 58, 211-232.
Romberg, L. and Levin, P.A. (2003). Assembly dynamics of the bacterial cell division protein FtsZ: poised at the edge of stability. Annu. Rev. Microbiol. 57, 125-154.
Roszak, D.B. and Colwell, R.R. (1987). Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51, 365-379.
Rothfield, L., Justice, S., and Garcia-Lara, J. (1999). Bacterial cell division. Annu. Rev. Genet. 33, 423-448.
Roux, P., Munter, S., Frischknecht, F., Herbomel, P., and Shorte, S.L. (2004). Focusing light on infection in four dimensions. Cell. Microbiol. 6, 333-343.
Rowe-Magnus, D.A. and Mazel, D. (2001). Integrons: natural tools for bacterial genome evolution. Curr. Opin. Microbiol. 4, 565-569.
Rowe-Magnus, D.A., Guerout, A.M., and Mazel, D. (2002). Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol. Microbiol. 43, 1657-1669.
Rowe-Magnus, D.A., Guerout, A.M., Biskri, L., Bouige, P., and Mazel, D. (2003). Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res. 13, 428-442.
Rowe-Magnus, D.A., Guerout, A.M., Ploncard, P., Dychinco, B., Davies, J., and Mazel, D. (2001). The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc. Natl. Acad. Sci. USA 98, 652-657.
Ruby, E.G., Urbanowski, M., Campbell, J., Dunn, A., Faini, M., Gunsalus, R., Lostroh, P., Lupp, C., McCann, J., Millikan, D., Schaefer, A., Stabb, E., Stevens, A., Visick K., Whistler, C., and Greenberg, E.P. (2005). Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA 102, 3004-3009.
Rueda, S., Vicente, M., and Mingorance, J. (2003). Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the Escherichia coli cell cycle. J. Bacteriol. 185, 3344-3351.
Ryan, K.R. and Shapiro, L. (2003). Temporal and spatial regulation in prokaryotic cell cycle progression and development. Annu. Rev. Biochem. 72, 367-394.
Santos, J.M., Lobo, M., Matos, A.P., De Pedro, M.A., and Arraiano, C.M. (2002). The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol. Microbiol. 45, 1729-1740.
Santra, M.K., Beuria, T.K., Banerjee, A., and Panda, D. (2004). Ruthenium red-induced bundling of bacterial cell division protein, FtsZ. J. Biol. Chem. 279, 25959-25965.
Sarcina, M. and Mullineaux, C.W. (2000). Effects of tubulin assembly inhibitors on cell division in prokaryotes in vivo. FEMS Microbiol. Lett. 191, 25-29.
Scheffers, D. and Driessen, A.J. (2001). The polymerization mechanism of the bacterial cell division protein FtsZ. FEBS Lett. 506, 6-10.
Scheffers, D.J., Jones, L.J., and Errington, J. (2004). Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol. Microbiol. 51, 749-764.
Scheibel, T. (2005). Protein fibers as performance proteins: new technologies and applications. Curr. Opin. Biotechnol. 16, 427-433.
Schliwa, M. and Woehlke, G. (2003). Molecular motors. Nature 422, 759-765.
Scholey, J.M., Brust-Mascher, I., and Mogilner, A. (2003). Cell division. Nature 422, 746-752.
Scott, M.E., Dossani, Z.Y., and Sandkvist, M. (2001). Directed polar secretion of protease from single cells of Vibrio cholerae via the type II secretion pathway. Proc. Natl. Acad. Sci. USA 98, 13978-13983.
Seguritan, V., Feng, I.W., Rohwer, F., Swift, M., and Segall, A.M. (2003). Genome sequences of two closely related Vibrio parahaemolyticus Phages, VP16T and VP16C. J. Bacteriol. 185, 6434-6447.
Shapiro, J.A. (1998). Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81-104.
Shapiro, L. and Losick, R. (2000). Dynamic spatial regulation in the bacterial cell. Cell 100, 89-98.
Shapiro, L., McAdams, H.H., and Losick, R. (2002). Generating and exploiting polarity in bacteria. Science 298, 1942-1946.
Shav-Tal, Y., Singer, R.H., and Darzacq, X. (2004). Imaging gene expression in single living cells. Nat. Rev. Mol. Cell Biol. 5, 855-861.
Sherratt, D.J. (2003). Bacterial Chromosome Dynamics. Science 301, 780-785.
Shih, Y.L., Fu, X., King, G.F., Le, T., and Rothfield, L. (2002). Division site placement in E. coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. EMBO J. 21, 3347-3357.
Shih, Y.L., Le, T., and Rothfield, L. (2003). Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc. Natl. Acad. Sci. USA 100, 7865-7870.
Simon, R., Priefer, U., and Puhler, A. (1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1, 784-791.

Simpson, J.C. and Pepperkok, R. (2003). Localizing the proteome. Genome Biol. 4, 240.
Sitnikov, D.M., Schineller, J.B., and Baldwin, T.O. (1996). Control of cell division in Escherichia coli: regulation of transcription of ftsQA involves both rpoS and sdiA-mediated autoinduction. Proc. Natl. Acad. Sci. USA 93, 336-341.
Slovak, P.M., Wadhams, G.H., and Armitage, J.P. (2005). Localization of MreB in Rhodobacter sphaeroides under conditions causing changes in cell shape and membrane structure. J. Bacteriol. 187, 54-64.
Sluder, G. and Wolf, D.E. (2003). Digital Microscopy: A Second Edition of Video Microscopy. (San Diego: Academic Press).
Smith, A.B. and Siebeling, R.J. (2003). Identification of genetic loci required for capsular expression in Vibrio vulnificus. Infect. Immun. 71, 1091-1097.
Southward, C.M. and Surette, M.G. (2002). The dynamic microbe: green fluorescent protein brings bacteria to light. Mol. Microbiol. 45, 1191-1196.
Sperandio, V., Mellies, J.L., Nguyen, W., Shin, S., and Kaper, J.B. (1999). Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 15196-15201.
Stabb, E.V. and Ruby, E.G. (2002). RP4-based plasmids for conjugation between Escherichia coli and members of the Vibrionaceae. Methods Enzymol. 358, 413-426.
Steenhoudt, O. and Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24, 487-506.
Stephens, C. (2005). Senescence: even bacteria get old. Curr. Biol. 15, R308-R310.
Stephens, D.J. and Allan, V.J. (2003). Light microscopy techniques for live cell imaging. Science 300, 82-86.
Stewart, E.J., Madden, R., Paul, G., and Taddei, F. (2005). Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3, e45.
Stricker, J., Maddox, P., Salmon, E.D., and Erickson, H.P. (2002). Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc. Natl. Acad. Sci. USA 99, 3171-3175.
Suefuji, K., Valluzzi, R., and RayChaudhuri, D. (2002). Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE. Proc. Natl. Acad. Sci. USA 99, 16776-16781.
Sun, Q. and Margolin, W. (1998). FtsZ dynamics during the division cycle of live Escherichia coli cells. J. Bacteriol. 180, 2050-2056.
Sun, Q. and Margolin, W. (2004). Effects of perturbing nucleoid structure on nucleoid occlusion- mediated toporegulation of FtsZ ring assembly. J. Bacteriol. 186, 3951-3959.
Swedlow, J.R. and Platani, M. (2002). Live cell imaging using wide-field microscopy and deconvolution. Cell Struct. Funct. 27, 335-341.
Szeto, T.H., Rowland, S.L., Rothfield, L.I., and King, G.F. (2002). Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proc. Natl. Acad. Sci. USA 99, 15693-15698.
Tagomori, K., Iida, T., and Honda, T. (2002). Comparison of genome structures of Vibrios, bacteria possessing two chromosomes. J. Bacteriol. 184, 4351-4358.
Tamames, J. (2001). Evolution of gene order conservation in prokaryotes. Genome. Biol. 2, RESEARCH0020.
Tamames, J., Gonzalez-Moreno, M., Mingorance, J., Valencia, A., and Vicente, M. (2001). Bringing gene order into bacterial shape. Trends Genet. 17, 124-126.
Tampakaki, A.P., Fadouloglou, V.E., Gazi, A.D., Panopoulos, N.J., and Kokkinidis, M. (2004). Conserved features of type III secretion. Cell. Microbiol. 6, 805-816.
Tetart, F. and Bouche, J.P. (1992). Regulation of the expression of the cell-cycle gene ftsZ by DicF antisense RNA. Division does not require a fixed number of FtsZ molecules. Mol. Microbiol. 6, 615-620.
Thanedar, S. and Margolin, W. (2004). FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr. Biol. 14, 1167-1173.
Thompson, F.L., Iida, T., and Swings, J. (2004). Biodiversity of Vibrios. Microbiol. Mol. Biol. Rev. 68, 403-431.
Thompson, L.J., Merrell, D.S., Neilan, B.A., Mitchell, H., Lee, A., and Falkow, S. (2003). Gene expression profiling of Helicobacter pylori reveals a growth-phase-dependent switch in virulence gene expression. Infect. Immun. 71, 2643-2655.
Trucksis, M., Michalski, J., Deng, Y.K., and Kaper, J.B. (1998). The Vibrio cholerae genome contains two unique circular chromosomes. Proc. Natl. Acad. Sci. USA 95, 14464-14469.
Tsien, R.Y. (1998). The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544.
Uehara, T., Matsuzawa, H., and Nishimura, A. (2001). HscA is involved in the dynamics of FtsZ-ring formation in Escherichia coli K12. Genes Cells 6, 803-814.
Usmanova, A., Astier, C., Mejean, C., Hubert, F., Feinberg, J., Benyamin, Y., and Roustan, C. (1998). Coevolution of actin and associated proteins: an alpha-actinin-like protein in a Cyanobacterium (Spirulina platensis). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 120, 693-700.
Valdivia, R., Cormack, B., and Falkow, S. (1998). The uses of green fluorescent protein in prokaryotes. In Green Fluorescent Protein: Properties, Applications, and Protocols, M. Chalfie and S. Kain, eds. (New York: Wiley-Liss, Inc.), pp. 121-138.
Vale,R.D. (2003). The molecular motor toolbox for intracellular transport. Cell 112, 467-480.
Valpuesta, J.M., Martin-Benito, J., Gomez-Puertas, P., Carrascosa, J.L., and Willison, K.R. (2002). Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett. 529, 11-16.
van den Ent, F., Amos, L.A., and Lowe, J. (2001a). Prokaryotic origin of the actin cytoskeleton. Nature 413, 39-44.
van den Ent, F., Amos, L., and Lowe, J. (2001b). Bacterial ancestry of actin and tubulin. Curr. Opin. Microbiol. 4, 634-638.
van den Ent, F., Moller-Jensen, J., Amos, L.A., Gerdes, K., and Lowe, J. (2002). F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J. 21, 6935-6943.
van den Ent,F. and Lowe, J. (2000). Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J. 19, 5300-5307.
van Roessel, P. and Brand, A.H. (2002). Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nat. Cell Biol. 4, E15-E20.
Varley, A.W. and Stewart, G.C. (1992). The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (minCD) and cell shape (mreBCD) determinants. J. Bacteriol. 174, 6729-6742.
Varma, A. and Young, K.D. (2004). FtsZ collaborates with penicillin binding proteins to generate bacterial cell shape in Escherichia coli. J. Bacteriol. 186, 6768-6774.
Vezzi, A., Campanaro, S., D'Angelo, M., Simonato, F., Vitulo, N., Lauro, F.M., Cestaro, A., Malacrida, G., Simionati, B., Cannata, N., Romualdi, C., Bartlett, D.H., and Valle, G. (2005). Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307, 1459-1461.
Vicente, M., Gomez, M.J., and Ayala, J.A. (1998). Regulation of transcription of cell division genes in the Escherichia coli dcw cluster. Cell. Mol. Life Sci. 54, 317-324.
Vidal, M. (2001). A biological atlas of functional maps. Cell 104, 333-339.
Visa, N. (2005). Actin in transcription: actin is required for transcription by all three RNA polymerases in the eukaryotic cell nucleus. EMBO Reports 6, 218-219.
Vollmer, W. and Holtje, J.V. (2001). Morphogenesis of Escherichia coli. Curr. Opin. Microbiol. 4, 625-633.
Wachi, M. and Matsuhashi, M. (1989). Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coli cells. J. Bacteriol. 171, 3123-3127.
Wachi, M., Doi, M., Okada, Y., and Matsuhashi, M. (1989). New mre genes mreC and mreD, responsible for formation of the rod shape of Escherichia coli cells. J. Bacteriol. 171, 6511-6
第一頁 上一頁 下一頁 最後一頁 top