參考文獻
中文部分
1.陳元保(1999)著,股市波動與經濟波動的因果關係,中華經濟研究院期刊,頁1-31。
2.陳增福(2002)著,應用LPMS法探求最適避險比率-以指數期貨與指數選擇權為例,國立高雄一科技大學財務管理所碩士論文。3.林威助(2003)著,多變量GARCH架構下股價指數期貨避險策略之研究,國立台北大學企業管理學系碩士論文。4.林婧文(2001)著,最適公債期貨避險策略之實證研究,國立高雄第一科技大學財務管理系碩士論文。
5.李儀坤, 張捷昌, 黃建森(2000)合著,金融風險管理,華泰文化。
6.吳宏達(2000)著,台股指數期貨與現貨之關聯性與預測-自我迴歸條件異質變異數族群模型之應用,國立台北大學統計學系碩士論文。7.孫光政(2003)著,台股指數期貨避險比率與效果之實證研究—VECM-E-GARCH與VECM-GJR-GARCH之應用,國立台北大學合作經濟學系碩士論文。8.黃馨慧(2003)著,台灣、日本、新加坡、韓國與美國股市關聯性之研究—VEC-TGARCH模型之運用,佛光人文社會學院經濟學系碩士論文。9.黃紹儀(1999)著,期貨契約避險比率研究及績效分析—以SIMEX及TAIMEX為例,國立中興大學企業管理學系碩士論文。10.黃景明(2002)著,台灣股價指數期貨最適避險策略之研究,私立淡江大學財務金融學系碩士論文。11.楊育軒、李昱翰(2003)著,台灣與亞太股市資訊傳遞效果之研究-三元EGARCH模型之應用,第三屆提昇競爭力與經營管理研討會。
12.蔡瓊霈(2001)著,利率波動對殖利率曲線形狀之探究--蝶式交易策略之應用,國立台北大學企業管理學系碩士論文。13.蔡依菁(2003)著,短期利率期貨與現貨關聯性之研究—以三個月期美國國庫券與歐洲美元為例,南華大學財務管理研究所碩士論文14.賴昌作(2000)著,股價指數之避險比率與避險效益,國立台灣科技大學資訊管理研究所碩士班碩士論文。15.葉銀華、蔡麗茹(2000)著,不同波動期間之期望報酬與風險關係的實證研究:不對稱GARCH-M模型之應用,輔仁管理評論,第七卷第二期。16.魏志良(2001)著,國際股價指數期貨與現貨直接避險策略之研究,私立淡江大學財務金融學系碩士論文。17.蘇啟仁(2003)著,美國股市及其總體經濟變數間關聯性與波動性之研究,國立台北大學合作經濟學系碩士論文。英文部分
1.Bollerslev. T. (1986), “Generalised Autoregressive Conditional Heteroscedasticity” ,Journal of Econometrics, 33, pp.307-327.
2.Baillie, R.T. and R.J.Myers, (1991), “Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge”, Journal of Applied Econometrics, Vol.6, pp.109-124.
3.Benet, B.A. (1992), “Hedge Period Length and Ex-Ante Futures Hedging Effectiveness: The Case of Foreign-Exchange Risk Cross Hedges”, Journal of Futures Markets, Vol.12, pp.163-175.
4.Cecchetti, S.G., R.E.Cumby, and S. Figlewski, (1988), “Estimation of Optimal Futures Hedge”, Review of Economics and Statistics, Vol.70, pp.623-630.
5.Chen, S. S., C. F. Lee., and K. Shrestha(2001), ”On a mean-generalized semivariance approach to determining the hedge ratio”, Journal of Futures Markets,Vol. 21, no.6, pp. 581-598.
6.Chan, K., K.C. Chan, and A.Karolyi, (1991), “Intraday Volatility in the Stock Index and Stock Index Futures Markets”, Review of Financial Studies, Vol.4, No.4, pp.657-684.
7.Chen Sheng-Syan,Cheng-few Lee,Keshab Shrestha (2003), ”Futures hedge ratios:a review”, The Quarterly Review of Journal of Economics and Finance, Vol.42, pp.433-465.
8.Dickey, D.A. and W. A. Fuller, (1979), “Distribution of the Estimates for Autoregressive Time Series with Unit Root”, Journal of the American statistical Association, Vol.74, No.366, pp.427-431.
9.Dickey, D. A. (1981), “Likelihood ratio statistics for autoregressive time series with a unit root”, Econometrica , Vol. 49, pp.1057-1072.
10.Ederington, L. H. (1979), ”The hedging performance of the new futures markets”, Journal of Finance, Vol. 34, no.1, pp.157-170.
11.Engle, R.F. and C.W.J.Granger, (1987),“Co-integration and Error Correction: Representation Estimation and Testing”, Econometrica, Vol. 55, No.2, pp.251-276.
12.Engle, R.F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation”,Econometrics, Vol.50, pp.987-1007.
13.Eftekhari, B. (1998), ”Lower partial moment hedge ratios”, Applied Financial Economics, Vol. 8, pp. 645-652.
14.Engle, R. F., and K. Kroner (1995), “Multivariate simultaneous GARCH”, Econometric Theory, Vol. 11, pp.122-150.
15.Granger, C. W. J. and P. Newbold (1974), ”Spurious regression in econometrics”, Journal of Econometrics, Vol. 2, pp.111-120.
16.Howard, C.T. and L.J. D’Antonio, (1984), “A risk-return measure of hedging effectiveness”, Journal of Financial and Quantitative Analysis, Vol.19, No. 1, pp.373-381.
17.Kahl, K.H. (1983), “Determination of the Recommended Hedging Ratio”, American Journal of Agricultural Economics , Vol.65, pp.603-605.
18.Koutmos, G. (1998), “Asymmetries in the Conditional Mean and the Conditional Variance: Evidence From Nine Stock Markets,” Journal of Econometrics and Business, Vol. 50, pp. 277-290.
19.Lobo B. (2000), “Asymmetric Effects of Interest Rate Change On Stock Prices,” The Financial Review , Vol, 35, pp.125-44.
20.Lien, D., and Tse, Y.K. (2000), “Hedgeing downside risk with future contracts”, Applied financial Economics, Vol.10, pp.163-170.
21.Myers, R.J. (1991), “Estimating Time Varying Optimal Hedge Ratios on Futures Markets”, Journal of Futures Markets, Vol.11 No.1, pp.39-53.
22.Nelson, D.B. (1991), “Conditional Heteroskedasticity in Asset Returns:a New Approach,” Econometrica, Vol. 59, pp. 347-370.
23.Rabemananjara, R. and J.M. Zakoian (1993), “ThresholdARCH Models and Asymmetries in Volatility,” Journalof Applied Econometric, Vol.88, pp.31-49.
24.Said, S. and D.Dickey, (1984), “Testing for Unit Roots in Autoregressive-Moving Average Models with Unknown Order”, Biometrica, Vol.71, pp.599-607
25.Taufiq Choudhry (2003), ”Short-run deviations ans optimal hedge ratio:evidence from stock futures”, Journal of Multinational Financial Management, Vol.13, pp.171-192.
26.Witt, H.J., T.C.Schroeder, and M.L. Hayenga, (1987), “Comparison of Analytical Approaches for Estimating Hedge Ratios for Agricultural Commodities”, Journal of Futures Markets, Vol.7, No.2, pp.135-146.
27.Zakoian, J.M. (1990), “Threshold HeteroskedasticModels,” Manuscript, CREST, INSEE, Paris.
28.Zakoian, J. M. (1994) “Threshold heteroskedasticmodel,” Journal of Economic Dynamics and Control 18, 931-955.