|
[1] Christoph M. Hoffmann, Ching-Shoei Chiang, “Variable-Radius Circles in Cluster Merging, Part I:Translational Clusters,” CAD, 34, pp. 787-797, 9, 2002. [2] Christoph M. Hoffmann, Ching-Shoei Chiang, “Variable-Radius Circles in Cluster Merging, Part II:Rotational Clusters,” CAD,34 ,pp. 799-805, 9, 2002. [3] Ching-Shoei Chiang, Robert Joan-Arinyo, “Revisiting Variable Radius Circles in Constructive Geometric Constraint Solving”, CAGD, 21, pp. 371-399, 4, 2004. [4] William E.Wright, “Rendering: Parallelization of Bresenham's Line and Circle Algorithms”, IEEE Computer Graphics and Application, 10, pp. 60-67, 1990. [5] Bouma, W., Fodos, I., Hoffman, C.M., Cai, J. and Paige, R. “A Geometric Constraint Solver,” CAD, Vol. 27(6), pp. 487-501, 1995. [6] Fudos I., “Constraint Solving for Computer Aided Design”, Ph.D. thesis, Department of Computer Science, Purdue University, 1995. [7] Hoffmann C.M., Vermeer P, “Geometric constraint solving in and “, Computing in Euclidean Geometry, World Scientific Publishing, pp. 266-298, 1995 [8] Joan-Arinyo, R., Soto, A., “A Correct Rule-Based Geometric Constraint Solver”, Computer and Graphics, 21(5), pp. 599-609, 1997. [9] Fudos I, Hoffmann C.M., “Constraint-Based Parametric Conics for CAD”, CAD, 28(2), pp. 91-100, 1996. [10] Hoffmann C.M., Peters J., “Geometric Constraints for CAGD”, Mathematical Methods for Curves and Surfaces, Vanderbilt University Press, pp. 237-254, 1995. [11] Muirhead, F.R., “On the number and nature of the solutions of the Apollonius contact problem,” Proceedings of the Edinburgh Mathematical Society, 14, pp. 135-147, 2002. [12] Bruen, A., Fisher, J.C., Wilker, J.B., “Apollonius by Inversion” Mathematics Magazine, Vol.56, No.2, 1983. [13] Pottmann, H., Wallner J., Computational Line Geometry, pp. 327-425, Springer 2001. [14] Allner, J., Krasauskas, R., Pottmann, H., “Error propogation in geometric constructions”, CAD, Vol. 32, No. 11, p631-641, 2000. [15] Cassino Durand, C.M. Hoffmann, “A systematic framework for solving geometric constraints analytically”, J. Symbolic Computation, Vol. 30, pp. 493-519, 2000. [16] Muller E, Krames L., “Vorlesungen Uber Darstellende Geometric II: Die Zyklographie”, Deuticke, Leipzig und Wien, 1929. [17] Hoffmann C.M., George Vanecek, Jr, “Fundamental Techniques for Geometric and Solid Modeling”, Leondes, C.T., Advances in Control and Dynamics, Academic Press, 1991. [18] Bresenhams, J.E., “Algorithm for computer control of a digital plottor”, IBM Syst. J., 4(1), pp. 25-30, 1965. [19] X-W Liu, K Cheng, “Three-dimensional extension of Bresenham’s algorithm and its application in straight-line interpolation”, SC02401, 2002. [20] R.T. Farouki, T.Sakkalis, “Pythagorean hodographs”, International Business Machines Corporation, 1990. [21] Joan-Arinyo, R., Soto-Riera, A., “Combining constructive and equational geometric constraint solving techniques”, ACM Trans. Graph. 18(1), pp.35-55, 1999. [22] F. S. HILL, JR., Computer Graphics, pp. 83-85, Prentice-Hall, 2001. [23] John Kennedy, “A Fast Bresenham Type Algorithm For Drawing Circle”. CA 90405. Dept. of Mathematics, FL: Santa Monica College., 1994. [24] John Kennedy, “A Fast Bresenham Type Algorithm For Drawing Ellipse”. CA 90405. Dept. of Mathematics, FL: Santa Monica College., 1994.
|