(54.236.58.220) 您好!臺灣時間:2021/03/01 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林憲志
研究生(外文):Hsien-chih Lin
論文名稱:兩個生化反應槽串聯之穩定狀態和動態分析
論文名稱(外文):An Analysis of the Steady States and Dynamics of Two Chemostats in Series
指導教授:林浩林浩引用關係
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:184
中文關鍵詞:生化反應槽穩定之穩態循環振盪
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
由於生物廢棄物的處理技術相當重要,故最近幾年來微生物的混合培養技術深受大家的重視,本研究實施菌類-基質(Cell-Substrate)和被捕食者-捕食者(Prey-Predator)相互作用之生化反應在兩個生化反應槽串聯之穩定狀態和動態分析,對於菌類-基質之生化反應,若以Monod模式來表示菌類之比生長速率,則此兩個生化反應槽串聯之反應系統共有三種型態之穩定狀態,本研究對此三種型態之穩定狀態和穩定度作深入的分析,對於此反應系統之動態行為,則由電腦運用數值分析的方法及電腦繪圖進行分析工作,動態分析的結果顯示此生化反應系統之動態行為,以穩定之穩態(Stable Steady State)為主。
對於被捕食者-捕食者相互作用之生化反應,此系統方程式係假設完全混合為前提所導出者,並假設被捕食者(細菌類)僅以培養系中之可溶性成分[基質(葡萄糖類)]為食物,而捕食者(纖毛蟲類)僅以被捕食者為食物來增殖,與環境之間並無可溶性物質之進出。若以Monod模式來表示被捕食者和捕食者之比生長速率,則此兩個生化反應槽串聯之反應系統共有六種型態之穩定狀態,本研究對此六種型態之穩定狀態和穩定度作深入的分析。對於動態分析,本研究運用數值分析的方法來求解系統之動態方程式,並運用電腦繪圖來進行動態分析,動態分析的結果顯示此生化反應系統之動態行為可為穩定之穩態(Stable Steady State)或循環振盪(Limit Cycle)。
Because the techniques of the biochemical waste treatment are very important, the techniques of the cultivation of the microorganism have received more attention in recent years. A study is conducted to analyze the steady states and dynamic bechavior of the reactions of the cell-substrate and the prey-predator interaction in two chemostats in series. For the reaction of cell-substrate in two chemostats in series, if the specific growth rate of the Monod model is used for the cell , there are three types of steady states for this reaction system. These three types of steady states and stability are analyzed in detail. The dynamic behavior of this reaction system is analyzed by the numerical method and computer graphs. The results show that the dynamic behavior of this system consists of stable steady states.
For the prey-predator interaction, the dynamic equations are derived by assuming that the reaction is occurring in a perfectly mixed condition. It is assumed that the prey( such as the bacterium ) is only fed with the substrate(such as the glucose) and the predator(such as the ciliate ) is only fed with the prey and no other substance exchanges between the system and the environment. If the Monod model is used for the specific growth rate of both the prey and the predator, there are six types of steady states for this reaction system and the six types of steady states and stability are analyzed in detail. The dynamic equations of this system are solved by the numerical method and the dynamic analysis is performed by computer graphs. The results show that the dynamic behavior of this system consists of stable steady states and limit cycles.
摘要...………………………………………………………………………………..…..iv
英文摘要..……………………………………………………………………….……….v
誌謝....….……………………………………………………………………………….. vi
目次....….…………………………………………………………………………...….. vii
表目錄....……………………………………………………………….…...….……….. ix
圖目錄..……………………………………………………………….………….………x第一章 前言...………………………………………………………………………......1
1.1 研究背景及目的……….……………………………………………….….….1
1.2 研究方法………………………………………………………………...….…2
1.3 預期完成之工作項目及成果………………………………………..………..3
第二章 菌類-基質在兩個生化反應槽串聯之穩定狀態和動態分析…………..…….4
2.1 動態系統方程式..………………………………………………………..……4
2.2 穩定狀態..………………………………………………………………..……6
2.3 穩定度分析……………………………………………………………....……7
2.4 動態分析…………………………………………………..…………………15
2.5 討論………………………………………………………..………….……...29
第三章 被捕食者-捕食者在兩個生化反應槽串聯之穩定狀態和動態分析…….…30
3.1 動態系統方程式…………………………………………..…………….…...30
3.2 穩定狀態…………………………………………………..………….……...32
3.3 穩定度分析………………………………………………..……….………...39
3.4 動態分析…………………………………………………..…….…………...58
3.5 討論………………………………………………………..………………..153
第四章 結論………………………………………………………………….…….….155
參考文獻…….……………………………………………………………...…...……..158
附錄A 計算機程式計算菌類-基質在兩個生化反應槽串聯之第一個生化反應
槽之動態…………………………………………………………….………161
附錄B 計算機程式計算菌類-基質在兩個生化反應槽串聯之第二個生化反應
槽之動態……………………………………………………………….……163
附錄C 計算機程式計算菌類-基質在兩個生化反應槽串聯之穩定狀態…….…..165
附錄D 計算機程式計算菌類-基質在兩個生化反應槽串聯之特徵值……….…..166
附錄E 計算機程式計算被捕食者-捕食者在兩個生化反應槽串聯之第一個
生化反應槽之動態……………………………………………………….…167
附錄F 計算機程式計算被捕食者-捕食者在兩個生化反應槽串聯之第二個生化
反應槽之動態……………………………………………………….………170
附錄G 計算機程式計算被捕食者-捕食者在兩個生化反應槽串聯之第一、二、
三型態之穩定狀態………………………………………………………….173
附錄H 計算機程式計算被捕食者-捕食者在兩個生化反應槽串聯之第四型態之
穩定狀態…………………………………………………………………….174
附錄I 計算機程式計算被捕食者-捕食者在兩個生化反應槽串聯之第五型態之
穩定狀態…………………………………………………………………….176
附錄J 計算機程式計算被捕食者-捕食者在兩個生化反應槽串聯之第六型態
之穩定狀態……………………...…………………………………………..177
附錄K 計算機程式計算被捕食者-捕食者在兩個生化反應槽串聯之特徵值…………………………………………………………………………….179
附錄L 菌類-基質在兩個生化反應槽串聯之質量平衡………………………...….181
附錄M 被捕食者-捕食者在兩個生化反應槽串聯之質量平衡……………….…183
1.Canale, R.P. , “Predator-Prey Relationships in a Model for the Activated Process”, Biotechnol. and Bioeng., Vol.11 , pp.887-907, 1969.
2.Canale, R.P. , “An Analysis of Models Describing Predator-Prey Interaction” , Biotechnol. and Bioeng., Vol.12, pp.353-378, 1970.
3.Tsuchiya, H.M. Drake, J.F., Jost, J.L., and Fredrickson, A.G. , “Predator-Prey Interactions of Dictyostelium discoideum and Escherichia coli in Continuous Culture” , J.of Bacteriology., Vol.110, No.3, pp.1147-1153, 1972.
4.Jost, J.L., Drake, J.F., Tsuchiya, H.M., and Fredrickson, A.G. , “Microbial Food Chains and Food Webs” , J. Theor. Biol., Vol.41, pp.461-484, 1973.
5.Canale, R.P., Lustig, T.D., Kehrberger, P.M. and Salo, J.E. , “Experimental and Mathematical Modeling Studies of Protozoan Predation on Bacteria” , Biotechnol. and Bioeng., Vol.15, pp.707-728, 1973.
6.May, R. M., “Biological Populations with Nonoverlapping Generations:
Stable Points, Stable Cycles, and Chaos” , Science, Vol.186, pp.645-647, 1974.
7.May, R. M., “Biological Populations Obeying Difference Equations: Stable Points, Stable Cycles, and Chaos” , J. Theor. Biol., Vol.51, pp. 511-524, 1975.
8.Saunders, P.T., and Bazin, M.J. , “On the Stability of Food Chains” , J. Theor. Biol., Vol.52, pp.121-142, 1975.
9.Sudo, R., Kobayashi, K., and Aiba, S. , “Some Experiments and Analysis of a Predator-Prey Model:Interaction between Colpidum campylum and Alcaligenes faecalis in Continuous and Mixed Culture” , Biotechnol. and Bioeng., Vol.17, pp.167-184, 1975.
10.May, R. M., “Simple Mathematical Models with Very Complicated Dynamics” , Nature, Vol.261, pp. 459-467, 1976.
11.Olsen, L. F. and Degn, H., “Chaos in an Enzyme Reaction”, Nature, Vol.267, pp.177-178, 1977.
12.Schmitz, R. A., Graziani, K. R. and Hudson, J. L., “Experimental Evidence of Chaotic States in the Belousov-Zhabotinskii Reaction” , J. Chem. Phys., Vol.67, pp.3040-3044, 1977.
13.Sheintuch, M., “Dynamics of Commensalistic System with Self- and
Cross-Inhibition” , Biotechnol. and Bioeng., Vol.22, pp.2557-2577, 1980.
14.Hastings, A. , “Multiple Limit Cycles in Predator-Prey Models” , J. Math. Biol., Vol.11, pp.51-63, 1981.
15.Decroly, O., and Goldbeter, A., “Birhythmicity, Chaos, and Other Patterns of Temporal Self-Organization in a Multiply Regulated Biochemical System” , Proc. Natl. Acad. Sci. U.S.A., Vol.79, pp.6917-6921, 1982.
16.Agrawal, P., Lee, C., Lim, H. C., and Ramkrishna, D., “Theoretical Investigations
of Dynamic Behavior of Isothermal Continuous Stirred Tank Biological Reactors” , Chem. Eng. Sci., Vol.37, pp.453-462, 1982.
17.Butler, G.J., Hsu, S.B., and Waltman, P., “Coexistence of Competing Predators in a Chemostat” , J. Math. Biol., Vo1.17, pp.133-151, 1983.
18.Keener, J.P. , “Oscillatory Coexistence in a Food Chain Model with Competing Predators” , J. Math. Biol., Vol.22, pp.123-135, 1985.
19.Pavlou, S., “Dynamics of a Chemostat in Which One Microbial Population Feeds on Another” , Biotechnol. and Bioeng., Vol.27, pp.1525-1532, 1985.
20.Bailey, J.E. and Ollis, D.F. , “Biochemical Engineering Fundamentals“ , McGraw-Hill Book Company, Second Edition, pp.384, 1986.
21.Mihail, R. and Straja, S. , “An Analysis of the Steady States of a Chemostat with Applications to Its Design” , Biotechnol. and Bioeng., Vol.31, pp.87-90, 1988.
22.Ivanitskaya, J.G., Petrikevich, S.B. and Bazykin, A.D. , “Oscillations in Continuous Cultures of Microorganisms:Criteria of Utility of Mathematical Models” , Biotechnol. and Bioeng., Vol.33, pp.1162-1166, 1989.
23.Weber, A.E., and San, K-Y., “Population Dynamics of a Recombinant Culture in a Chemostat under Prolonged Cultivation” , Biotechnol. and Bioeng., Vol.36, pp.727-736, 1990.
24.Kiss, R.D., and Stephanopoulos, G., “Culture Instability of Auxotrophic Amino Acid Producers” , Biotechnol. and Bioeng., Vol.40, pp.75-85, 1992.
25.Lenas, P., and Pavlou, S., “Coexistence of Three Competing Microbial Populations in a Chemostat with Periodically Varying Dilution Rate” , Mathematical Slosciences, Vol.27, pp.615-642, 1995.
26.Sheintuch, M.,Tartakovsky, B.,Narkis, N. and Rebhun, M., “Substrate Inhibition and Multiple States in a Continuous Nitrification Process” , Wat. Res, Vol.29, pp.953-963, 1995
27.Ajbar, A., and Ibrahim, G., “Periodic and Nonperiodic Oscillatory Behavior in a Model for Activated Sludeg Reactors” , Mathl. Comput. Modelling., Vol.25, pp.9-27, 1997
28.Xiu, Z-L, Zeng A-P, and Deckwer, W-D, “Model Analysis Concerning the Effects of Growth Rate and Intracellular Tryptophan Level on the Stability and Dynamics of Tryptophan Biosynthesis in Bacteria” , J. of Biotechnology, Vol.58, pp.125-140, 1997.
29.Ajbar, A., and Ibrahim, G., “Stability and Bifurcation of an Unstructured Model of a Bioreactor with Cell Recycle” , Mathl. Comput. Modelling., Vol.25, No. 2, pp.31-48, 1997.
30.Xiu, Z-L, Zeng A-P, and Deckwer, W-D, “Multiplicity and Stability Analysis of Microorganisms in Continuous Culture:Effects of Metabolic Overflow and Growth Inhibition” , Biotechnol. and Bioeng., Vol.57, pp.251-261, 1998.
31.Wang, J., Liu, P., Shi, H. and Qian, Y., “Kinetics of Biodegradation of Di-N-butyl Phthalate in Continuous Culture System” , Chemosphere, Vol.37, pp.257-264, 1998.
32.Jones, K.D., and Kompala, D.S., “Cybernetic Model of the Growth Dynamics of Saccharomyces Cerevisiae in Batch and Continuous Cultures” , J. of Biotechnology, Vol.71, pp.105-131, 1999.
33.Ajbar, A., and Alhumaizi, K., “Biodegradation of Substitutable Substrates in a Continuous Bioreactor with Cell Recycle: A Study of Static Bifurcation” , Mathl. Comput. Modelling., Vol.31, pp.159-174, 2000.
34.Ajbar, A., “Stability Analysis of the Biodegradation of Mixed Wastes in a Continuous Bioreactor with Cell Recycle ” , Wat. Res., Vol.35, No. 5, pp.1201-1208, 2001.
35. Ajbar, A., “On the Existence of Oscillatory Behavior in Unstructured Models of Bioreactors” ,Chemical Engineering Science., Vol.56, pp.1991-1997, 2001.
36.Ajbar, A., “Classification of Static and Dynamic Behavior in Chemostat for Plasmid-Bearing, Plasmid-Free Mixed Recombinant Cultures” , Chem. Eng. Comm., Vol.189, pp.1130-1154, 2002.
37. Kim, H., and Pagilla, K.R., “Competitive Growth of Gordonia and Acinetobacter in Continuous Flow Aerobic and Anaerobic/Aerobic Reactors” , J. of Bioscience. and Bioeng., Vol.95, No. 6, pp.577-582, 2003.
38 Hwang ,Tzy-Wei., “Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response” , J. Math. Anal. Appl., Vol.290, pp.113-122 , 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 余嬪(民87)。休閒活動的選擇與規劃。學生輔導,60,20-31。
2. 文崇一(民70)。青年工人的休閒行為與其類型。中央研究院民族學研究所集刊,51,1-62。
3. 吳靜吉、郭俊賢 (民85)。大學生快樂來源量表之建立。中國測驗學會測驗年刊,43,263-278。
4. 呂建政(民83)。倡導休閒教育與輔導健全青少年身心發展。測驗與輔導雙月刊,137,2818-2821。
5. 李雯娣(民89)。國小兒童性格特質之研究。屏東師範學院國民教育研究所碩士論文,未出版,屏東縣。
6. 林素麗(民66)。休閒的理論的研究。思與言,15(1),27-35。
7. 張酒雄、鍾蔚起、邱祖賢、郭丁熒、羅瑞玉、楊景堯(民84)。青少年對休閒活動看法之研究。國立高雄師範大學教育學系,教育學刊,11,107-143。
8. 莊耀嘉、李雯娣(民90)。兒童性格結構:五大模型的本土化檢驗。中華心理學刊,43(1),65-82。
9. 莊耀嘉、黃光國(民70)。國中學生的成敗歸因與無助感特徵。中華心理學刊,23(2),155-164。
10. 黃信二(民89)。論亞里斯多德「幸福」觀念在古希臘倫理學脈絡中之意義。文明探索叢刊,21,49-76。
11. 黃德祥(民81)。休閒輔導與學生發展。學生輔導通訊,21,14-21。
12. 楊澤波(民86)。孟子幸福觀與後世去欲主義的產生(下)。孔孟月刊,33(2),9-16。
13. 楊澤波(民86)。孟子幸福觀與後世去欲主義的產生(上)。孔孟月刊,32(10),2-10。
14. 蔡長清、劉修祥、黃淑貞(民90)。退休老人休閒參與量及類型與生活滿意度之關係。高雄應用科技大學學報,31,183-220。
15. 顏妙桂(民79)。休閒活動價值之研究。德育學報,5,1-10。
 
系統版面圖檔 系統版面圖檔