|
1.Canale, R.P. , “Predator-Prey Relationships in a Model for the Activated Process”, Biotechnol. and Bioeng., Vol.11 , pp.887-907, 1969. 2.Canale, R.P. , “An Analysis of Models Describing Predator-Prey Interaction” , Biotechnol. and Bioeng., Vol.12, pp.353-378, 1970. 3.Tsuchiya, H.M. Drake, J.F., Jost, J.L., and Fredrickson, A.G. , “Predator-Prey Interactions of Dictyostelium discoideum and Escherichia coli in Continuous Culture” , J.of Bacteriology., Vol.110, No.3, pp.1147-1153, 1972. 4.Jost, J.L., Drake, J.F., Tsuchiya, H.M., and Fredrickson, A.G. , “Microbial Food Chains and Food Webs” , J. Theor. Biol., Vol.41, pp.461-484, 1973. 5.Canale, R.P., Lustig, T.D., Kehrberger, P.M. and Salo, J.E. , “Experimental and Mathematical Modeling Studies of Protozoan Predation on Bacteria” , Biotechnol. and Bioeng., Vol.15, pp.707-728, 1973. 6.May, R. M., “Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos” , Science, Vol.186, pp.645-647, 1974. 7.May, R. M., “Biological Populations Obeying Difference Equations: Stable Points, Stable Cycles, and Chaos” , J. Theor. Biol., Vol.51, pp. 511-524, 1975. 8.Saunders, P.T., and Bazin, M.J. , “On the Stability of Food Chains” , J. Theor. Biol., Vol.52, pp.121-142, 1975. 9.Sudo, R., Kobayashi, K., and Aiba, S. , “Some Experiments and Analysis of a Predator-Prey Model:Interaction between Colpidum campylum and Alcaligenes faecalis in Continuous and Mixed Culture” , Biotechnol. and Bioeng., Vol.17, pp.167-184, 1975. 10.May, R. M., “Simple Mathematical Models with Very Complicated Dynamics” , Nature, Vol.261, pp. 459-467, 1976. 11.Olsen, L. F. and Degn, H., “Chaos in an Enzyme Reaction”, Nature, Vol.267, pp.177-178, 1977. 12.Schmitz, R. A., Graziani, K. R. and Hudson, J. L., “Experimental Evidence of Chaotic States in the Belousov-Zhabotinskii Reaction” , J. Chem. Phys., Vol.67, pp.3040-3044, 1977. 13.Sheintuch, M., “Dynamics of Commensalistic System with Self- and Cross-Inhibition” , Biotechnol. and Bioeng., Vol.22, pp.2557-2577, 1980. 14.Hastings, A. , “Multiple Limit Cycles in Predator-Prey Models” , J. Math. Biol., Vol.11, pp.51-63, 1981. 15.Decroly, O., and Goldbeter, A., “Birhythmicity, Chaos, and Other Patterns of Temporal Self-Organization in a Multiply Regulated Biochemical System” , Proc. Natl. Acad. Sci. U.S.A., Vol.79, pp.6917-6921, 1982. 16.Agrawal, P., Lee, C., Lim, H. C., and Ramkrishna, D., “Theoretical Investigations of Dynamic Behavior of Isothermal Continuous Stirred Tank Biological Reactors” , Chem. Eng. Sci., Vol.37, pp.453-462, 1982. 17.Butler, G.J., Hsu, S.B., and Waltman, P., “Coexistence of Competing Predators in a Chemostat” , J. Math. Biol., Vo1.17, pp.133-151, 1983. 18.Keener, J.P. , “Oscillatory Coexistence in a Food Chain Model with Competing Predators” , J. Math. Biol., Vol.22, pp.123-135, 1985. 19.Pavlou, S., “Dynamics of a Chemostat in Which One Microbial Population Feeds on Another” , Biotechnol. and Bioeng., Vol.27, pp.1525-1532, 1985. 20.Bailey, J.E. and Ollis, D.F. , “Biochemical Engineering Fundamentals“ , McGraw-Hill Book Company, Second Edition, pp.384, 1986. 21.Mihail, R. and Straja, S. , “An Analysis of the Steady States of a Chemostat with Applications to Its Design” , Biotechnol. and Bioeng., Vol.31, pp.87-90, 1988. 22.Ivanitskaya, J.G., Petrikevich, S.B. and Bazykin, A.D. , “Oscillations in Continuous Cultures of Microorganisms:Criteria of Utility of Mathematical Models” , Biotechnol. and Bioeng., Vol.33, pp.1162-1166, 1989. 23.Weber, A.E., and San, K-Y., “Population Dynamics of a Recombinant Culture in a Chemostat under Prolonged Cultivation” , Biotechnol. and Bioeng., Vol.36, pp.727-736, 1990. 24.Kiss, R.D., and Stephanopoulos, G., “Culture Instability of Auxotrophic Amino Acid Producers” , Biotechnol. and Bioeng., Vol.40, pp.75-85, 1992. 25.Lenas, P., and Pavlou, S., “Coexistence of Three Competing Microbial Populations in a Chemostat with Periodically Varying Dilution Rate” , Mathematical Slosciences, Vol.27, pp.615-642, 1995. 26.Sheintuch, M.,Tartakovsky, B.,Narkis, N. and Rebhun, M., “Substrate Inhibition and Multiple States in a Continuous Nitrification Process” , Wat. Res, Vol.29, pp.953-963, 1995 27.Ajbar, A., and Ibrahim, G., “Periodic and Nonperiodic Oscillatory Behavior in a Model for Activated Sludeg Reactors” , Mathl. Comput. Modelling., Vol.25, pp.9-27, 1997 28.Xiu, Z-L, Zeng A-P, and Deckwer, W-D, “Model Analysis Concerning the Effects of Growth Rate and Intracellular Tryptophan Level on the Stability and Dynamics of Tryptophan Biosynthesis in Bacteria” , J. of Biotechnology, Vol.58, pp.125-140, 1997. 29.Ajbar, A., and Ibrahim, G., “Stability and Bifurcation of an Unstructured Model of a Bioreactor with Cell Recycle” , Mathl. Comput. Modelling., Vol.25, No. 2, pp.31-48, 1997. 30.Xiu, Z-L, Zeng A-P, and Deckwer, W-D, “Multiplicity and Stability Analysis of Microorganisms in Continuous Culture:Effects of Metabolic Overflow and Growth Inhibition” , Biotechnol. and Bioeng., Vol.57, pp.251-261, 1998. 31.Wang, J., Liu, P., Shi, H. and Qian, Y., “Kinetics of Biodegradation of Di-N-butyl Phthalate in Continuous Culture System” , Chemosphere, Vol.37, pp.257-264, 1998. 32.Jones, K.D., and Kompala, D.S., “Cybernetic Model of the Growth Dynamics of Saccharomyces Cerevisiae in Batch and Continuous Cultures” , J. of Biotechnology, Vol.71, pp.105-131, 1999. 33.Ajbar, A., and Alhumaizi, K., “Biodegradation of Substitutable Substrates in a Continuous Bioreactor with Cell Recycle: A Study of Static Bifurcation” , Mathl. Comput. Modelling., Vol.31, pp.159-174, 2000. 34.Ajbar, A., “Stability Analysis of the Biodegradation of Mixed Wastes in a Continuous Bioreactor with Cell Recycle ” , Wat. Res., Vol.35, No. 5, pp.1201-1208, 2001. 35. Ajbar, A., “On the Existence of Oscillatory Behavior in Unstructured Models of Bioreactors” ,Chemical Engineering Science., Vol.56, pp.1991-1997, 2001. 36.Ajbar, A., “Classification of Static and Dynamic Behavior in Chemostat for Plasmid-Bearing, Plasmid-Free Mixed Recombinant Cultures” , Chem. Eng. Comm., Vol.189, pp.1130-1154, 2002. 37. Kim, H., and Pagilla, K.R., “Competitive Growth of Gordonia and Acinetobacter in Continuous Flow Aerobic and Anaerobic/Aerobic Reactors” , J. of Bioscience. and Bioeng., Vol.95, No. 6, pp.577-582, 2003. 38 Hwang ,Tzy-Wei., “Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response” , J. Math. Anal. Appl., Vol.290, pp.113-122 , 2004.
|