(3.232.129.123) 您好!臺灣時間:2021/03/04 18:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳家進
研究生(外文):Jia-Chin Chen
論文名稱:雙成分高分子凝膠層階模型
論文名稱(外文):Cascade Model of Two-Component Polymer Gels
指導教授:毛慶豐
指導教授(外文):Ching-Feng Mao
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:85
中文關鍵詞:層階模型三仙膠刺槐豆膠關豆膠
外文關鍵詞:Locust bean gumxanthancascade model
相關次數:
  • 被引用被引用:4
  • 點閱點閱:238
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
刺槐豆膠(LBG)和三仙膠(XG)為常見之多醣高分子,LBG在水溶液中不會發生膠凝作用,但混合後因LBG及XG分子間結合的效應形成凝膠。本研究建立雙成分混合凝膠網狀結構之層階模型,並討論混合凝膠的彈性模數及膠凝點。由凝膠彈性模數對濃度及溫度關係之實驗數據,可藉由非線性曲線配合之方法,求得模型之參數,並藉以理解LBG及XG分子間結合之機制。
混合凝膠層階模型係由單一凝膠層階模型為基礎之延伸,以滅絕機率描述分枝之網狀結構。凝膠之彈性來自於各成分之有效彈性鏈數目之加成,並假設與理想橡膠之模型類似。模型之主要參數包含:各成分之濃度、分子量、反應平衡常數(莫耳交聯反應焓及莫耳交聯反應熵)、各成分高分子上之官能基數目。前兩者可直接由實驗量測;後二者則必須藉助凝膠彈性模數對濃度及溫度關係曲線或膠凝點臨界行為來求得。
實驗中發現XG/LBG混合凝膠,由融點測定得到融化焓約為-80 kJ/mol。由彈性模數對濃度掃描圖,所得鍵結官能基數目為fXG = 100及fLBG = 1000,前置因子接近1,而由彈性模數對溫度掃描圖得到莫耳反應焓約為-50 kJ/mole,低於融點測定之結果。此官能基之分析顯示LBG可參與混合凝膠結點之部份,包含3個以上連續無支鏈之甘露醣殘基部份。而前置因子之分析表示XG分子在結點間具柔軟的構形,而非三股螺旋之構形。另外,由彈性模數對溫度掃描圖所得過高之fXG值,顯示溫度掃描曲線包含了其它程序的影響,如結構重排程序。
最後,在臨界濃度實驗部份,因為XG弱凝膠的作用,得到融化焓約為-13.7 kJ/mol,與XG弱凝膠相符。顯示臨界濃度實驗中,在低濃度下,凝膠之生成與否,係由XG自身鍵結所決定,而非來自於XG間LBG之作用。
Locust bean gum (LBG) and xanthan (XG) are widely used polysaccharides, exhibiting non-gelling behavior individually. Mixing of LBG and XG leads to the formation of synergistic gels, mainly due to the heterotypic binding between them. In this study, a cascade model for two-component polymer network was established, and its elasticity as well as the gel point were discussed based on this model. The model parameters can be extracted readily from experimental data utilizing a non-linear least square method.
The cascade model for two-component polymer gels is an extension of the cascade model for single-component polymer gels. The branching structure of the network is described by the extinction probability. The elastic modulus comes from the combination of the elastic active network chains for each component, assuming a relationship analogous to an ideal rubber, whereas the gel point is obtained by calculating the critical condition where the extinction probability has a value of unity. The model parameters include the concentrations and molecular weights for each component, the equilibrium constant (enthalpies and entropies), and the functionality for each component. The former two parameters are directly estimated by experiments, while the latter two can be obtained from the modulus-concentration curve, the modulus-temperature curve, or the gel point data.
The melting point measurements reveal a melting enthalpy of approximately -80 kJ/mol. On the other hand, cascade analysis on the modulus-versus-concentration data leads to the functionality set (fXG = 100 and fLBG = 1000), with front factors close to unity, while the modulus-versus-temperature data gives a molar enthalpy change of approximately -50 kJ/mole, less than that from melting point measurements. The value of fLBG implies that the interaction portion of LBG includes three consecutive unsubstituted mannose segments. The analysis on the front factors illustrates that xanthan adopts a disordered conformation between junction zones, rather than a helical conformation. The high fLBG value derived from the modulus-versus -temperature data indicates that other process, e.g., structural rearrangement process, may involve in the rheological meltdown.
Finally, the failure of critical concentration measurements is due to the weak gel behavior of xanthan, which dominates at low concentrations. The resulting melting enthalpy of -13.7 kJ/mol is exactly identical to that for xanthan weak gels. This fact implies that the formation of gels at low concentrations is determined by the self-association of xanthan.
中文摘要…………………………………………………….………………….. Ⅰ
英文摘要………………………………………………….…………………….. Ⅱ
致 謝…………………………………………………….…..………………… Ⅳ
目 錄………………………………………………………………………...… Ⅴ
表目錄…………………………………………………….………………..…… Ⅶ
圖目錄…………………………………………………………………….…..… Ⅷ

第一章 前言………………….……………..………………………………….. 1
1-1、背景………………………………….…….………….………………….. 1
1-2、研究目的…………………………………………..….………………….. 2
第二章 文獻整理……………………………………………………………….. 4
2-1、聚半乳甘露醣………………………………..…….…………………….. 4
2-1-1、刺槐豆膠…………………………………………………………….. 4
2-1-2、關豆膠…………………………………………...………………….. 5
2-2、三仙膠………………………………………………….………..……….. 5
2-3、聚半乳甘露醣/三仙膠混合凝膠系統………………….…………..……. 6
第三章 層階理論……………………………………………………………….. 10
3-1、高分子凝膠之網狀結構………………….……………….……..……….. 10
3-2、彈性模型………………………………….……………….………..…….. 11
3-2-1、單成分高分子凝膠彈性模型………………..……….…………….. 11
3-2-2、凝膠彈性模型之應用……………………………...……………….. 12
3-2-3、雙成分高分子混合凝膠彈性模型………………………………….. 14
3-2-4、臨界濃度…………………………………….……………………….. 15
3-3、反應程度與滅絕機率…………………………………………………….. 17
3-4、臨界濃度………………………………………………………………….. 19
3-5、濃度與彈性模數關係曲線……………………………………………….. 21
第四章 研究材料與方法……………………………………………………….. 31
4-1、材料與藥品……………………………………………………………….. 31
4-2、實驗儀器………………………………………………………………….. 31
4-3、實驗方法………………………………………………………………….. 32
4-3-1、單醣組成成分分析………………………………………………….. 32
4-3-2、極限黏度與高分子平均分子量……………………….…………….. 33
4-3-3、凝膠融點及融化焓………………………………………………….. 35
4-3-4、凝膠彈性行為……………………………………………………….. 37
4-3-4-1、凝膠彈性模型程式……………………………….…………….. 37
4-3-4-2、動態機械性質分析…………………………………………….. 39
第五章 結果與討論…………………………………………………………….. 46
5-1、單醣組成成分分析……………………………………………………….. 46
5-2、極限黏度與高分子平均分子量………………………………………….. 47
5-3、凝膠融點………………………………………………………………….. 48
5-4、動態機械性質…………………………………………………………….. 50
5-4-1、濃度效應…………………………………….……………………….. 51
5-4-2、溫度效應……………………………….…………………………….. 53
第六章 結論…………………………………………………………………….. 76
第七章 參考文獻……………………………………………………………….. 77
附錄A………………...………………………………………………………....... 82
附錄B…………………………………………………….….……………………. 84
Allan H.C., and Simon B. Ross-Murphy.(1985). The Concentration Dependence of Biopolymer Gel Modulus. British Polymer Journal, 17,164-186.
Almodal K., Dyre J., Hvidt S., and Kramer O.(1993). Towards a phenomenological definition of the term `gel'. Polymer Gels and Networks, 1, 5-17.
Alonso-Mougán M., Fraga F., Meijide F., Rodríguez-Núñez, E., and Vázquez-Tato j. (2003).Aggregation behaviour of polygalacturonic acid in aqueous solution. Carbohydrate Polymer, 51, 37–45.
Andrade C.T., Azero E.G., luciano L., and Goncalves M.P. (1999). Soultion prpperties of the galactomannans extracted from the seeds of Caesalpinia pulcherrima and Cassia javanica: comparison with licust bean gum. International Journal of Biological Macromolecules, 26, 181-185.
Amiji M.M.(1995). Pyrene fluorescence study of chitosan self-association in aqueous solution. Carbohydrate Polymer, 26, 211–213.
Barry V. M., Allan H. C., Iain C. M. D. and David A. R.(1985). The fine structures of carob and guar galactomannans. Carbohydrate Research, 139, 237-260.
Blankeney A.B., Harris P.J., Henry R.J., and Stone B.A. (1983). A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr, 113, 291-299.
Bot A., Smorenburg H.E., vreeker R., Paques M., and Clark. A.H. (2001).Melting behaviour of schizophyllan extracellular polysaccharide gels in the temperature range 5 and 20℃. Carbohtdrate Polyme, 45, 363-372.
Brownsey G.J., Cairns P., Miles M.J., and Morris V.J. (1988). Evidence for intermolecular binding between xanthan and the glucomannan konjac mannan. Carbohydrate Research, 176, 329-334.
Capron i., Brigand G., and muller G. (1997).About the native and renatured conformation of xanthan exopolysaccharide. Polymer, 38, 5289-5295.
Clark A.H., Gidley M.J., Richardson R.K., and Ross-murphy S.B.(1989).Rheological Studies of Aqueous Amylose Gels: The Effect of Chain Length and Concentration on Gel Modulus. Marcomolecules, 22, 364-351.
Cairns P., Miles M.J., and Morris V.J. (1986). Comparative studies of the mechanical properties of mixed gels formed by kappa carrageenan and tara gum of carob gum. Food Hydrocolloids, 1, 89-93.
Cairns P., Miles M.J., Morris V.J., and Brownsey G.J. (1987). X-Ray fibre-diffraction studies of synergistic, binary polysaccharide gels. Carbohydrate Research, 160, 411-423.
Capron I., Brigand G., and Muller G. (1997). About the native and renatured conformation of xanthan exopolysaccharide. Polymer, 38, 5389-5295.
Chambon F., and Winter H.H. (1985).Stopping of crosslinking reaction in a PDMS polymer at the gel point. Polymer Bulletin, 13, 499-503.
Clark A.H., and Ross-Murphy S.B. (1985).The Concentration Dependence of Biopolymer Gel Modulus. British Polymer Journal, 17, 164-168.
Coetti G., GRassi M., Lapasin R., and Pricl S. (1997).Synergistic gelation of xanthan gum with locust bean gum: a rheological investigation. Glycoconjugate Journal, 14, 951-961.
Cohen J., and Priel Z.(1989). Intrinsic viscosity of polyelectrolyte solution. Polymer Communications, 30, 223-224.
Cuvelier G., Launay B. (1986). Concentration regimes in xanthan gum solutions deduced from flow and viscoelastic properties. Carbohydrate Polymers, 6,321-333.
Dea I.C.M., Morris E.R., Rees D.A., Welsh E.J., Branes H.A., and Price J. (1977). Associations of like and unlike polysaccharides: Mechanism and specificity in galactomannans, interacting bacterial polysaccharides, and related systems. Carbohydrate Research, 57, 249–272.
Det I.C.M., Clark A.H., and McCleary B.V. (1986). Effect of galactose-substitution-patterns on the interaction properties of galactomannas. Carbohydrate Research, 147, 275-294.
Dobsob C.G., and Gordon M. (1965). Theory of Branching Processes and Statistics of Rubber Elasticity. The Journal of Chemical Physics, 43,705-714.
Gaisford S.E., Harding S.E., Mitchell J.R., and Bradley T.D. (1986). A comparison between the hot and cold water soluble fractions of two locust bean gum samples.Carbohydrate Polymer, 6, 423–442.
García-Ochoa F., and Casas J.A. (1994). Apparent yield stress in xanthan gum solution at low concentration. Chemical Engineering Journal and Biochemical Engineering Journal, 53, B41-B46.
García-Ochoa F., Santos V.E., Casas J.A., and Gómez E.(2000). Xanthan gum: production, recovery, and properties. Biotechnology Advances, 18, 549-579.
Giuliano C., Mario G., Romano L., and Sabrina P.(1997). Synergistic gelation of xanthan gum with locust bean gum :a rheological investigation, Glycoconjugate journal, 14, 951-961.
Gordon M., and Ross-Murphy S.B. (1975).The Structure and Properties of Molecular Trees and Networks. Pure and Applied Chemistry, 43, 1-26.
Goycoolea F. M., Richardson R. K., and Morris E. R. (1995). Stoichiometry and Conformation of Xanthan in Synergistic Gelation with Locust Bean Gum or Konjac Glucomannan: Evidence for Heterotypic Binding. Macromolecules, 28, 8308-8320.
Gordon M., and Scantlebury G.R. (1964). Non-Random Plocondensation : Statistical Theory of the Substitution Effect. Trans Faraday Soc, 60, 604-621.
Harrison M.A., Morgan P.H., and Park G.S.(1972). Thermoreversible Gelation in Polymer System-I. The Sol- Gel Transition in Dilute Poly(vinyl chloride)Gels. European Polymer Journal, 8,1361-1371.
Holzwarth G. M., and Brant D.A.(1981).Solution Properties of Polysaccharides. ACS Symposium Series, 150, 15-23.
Horton D., Hols O., Walaszak Z., and Wernau W.C.(1985).Structural and biosynthetic studies on xanthan by 13C-N.M.R. spectroscopy. Carbohydrate Research, 141, 340-6.
Ioannis S.C., Stefan K., and Robert K.R.(1996). Small deformation rheological properties of maltodextrin-milk protein systems. Carbohtdrate Polymer, 29, 137-148.
Jansson P.E., Kenne L., and Lindberg B.(1975). Structure of the extracellular polysaccharide from xanthomonas campestris. Carbohydrate Research, 45, 275-282.
John E.E., John D.F. (1954). Studies of The Crpss-linking Process in Gelatin Gels.111. Dependence of Melting Point on Concentration and Molecular Weight. Journal of Physical Chemistry, 58, 992-996.
Kroon G. (1993). Associative behavior of hydrophobically modified hydroxyethyl celluloses (HMHECs) in waterborne coatings. Progress in Organic Coatings, 22, 245–260.
Launay B., Cuvelier G., and Martinez-Reyes S. Xanthan gum in various solvent conditions: intrinsic viscosity and flow properties. In Phillips G.O., Wedlock D.J., and Williams P.A.(ed.),Gums and stabilizers for the food industry, vol.2 Pergamon Press, New York (1984).
Lewandowska K., Staszewska D.U. Bohdanecky M.(2001). The Huggins viscosity
coecient of aqueous solution of poly(vinyl alcohol). European Polymer Journal, 37, 25-32.
Lim T., Uhl J.T., Prud’homme R.K.(1984). Rheology of Self-Associating Concentrated Xanthan Solutions. Journal of Rheology, 28, 367-379.
Loret C., Meunier V., Frith W. J., and Fryer P. J. (2004). Rheological characterization
of the gelation behavior of maltodextrin aqueous solutions. Carbohydrate Polymer, 57, 153-163.
Lundin L., and Hermansson A.M.(1995).Supermolecular aspects of xanthan-locust bean gum gels based on rheology and electron microscopy. Carbohydrate Polymrs, 26, 129-140.
Luis G.T., Edmundo B., Enrique G., and Lionel C. (1993). Viscous Behavior of Xanthan Aqueous Solution from a Variant Strain of Xanthomonas campestris. Journal of Fermentation and Bioengineering, 75, 58-64.
Mannion R.O., Melia C.D., Launay B., Cuvelier G., Hill S.E., Harding S.E., and Mitchell J.R.(1992). Carbohydrate Polymrs, 19, 91-97.
Mao C.F., and Chen C.H.(2003). Thermoreversible Gelation of Nitrocellose Solution. Journal of Applied Polymer Science., 90, 4000-4008.
McClearyI B.V., Dea I.C.M., Windust J., and Cooke D. (1984). Interaction properties of -galactose-depleted guar galactomannan samples. Carbohydrate Polymers, 4, 253-270.
McClearyI B.V., Clark A.H., Dea I.C.M., and Rees D.A.(1985). Summaries of UK patent applications. Carbohydrate Polymers, 5, 237-240.
Milas M., and Rinaaudo M.(1979). Conformational investigation on the bacterial polysaccharide xanthan. Carbohydrate Research, 76, 189-196.
Morris E.R.(1997). Molecular origin of xanthan solution properties. Extracellular microbial polysaccharides. ACS Symp Ser(Washington, DC) 45, 81-9.
Morris E.R.(1984). Gums and Stabilizers for the Food Industry, 2; Phillips,G..O.,Williamp, P.A., Wedlock, D.J. eds.;Pergamon Press: Oxford, England, 1984; Vol. 2, pp 57-78.
Morris E.R., Ross-Murphy S.B. In: Northcote DH, editer. Techniques in Carbohydrate metabolism. Amsterdam: Elsevier/North-Holland, 1981:B310.1.
Morris V.J. (1992).In Gums and Stabilisers for the Food Industry 6; Phillips G.O., Williams P.A., Wedlock D.J., Eds.;IRL Press: Energy (Oxford; pp 161-171.
Morris V.J., Franklin D., and I’anson K.(1983). Rheology and Microstructure of Dispersions and Solutions of Microbial Polysaccharide from Xanthomonas campestris (Xanthan Gum). Carbohydrate Research, 121, 13-30.
Paradossi G., and Brant D.A.(1982).Light scattering studies of a series of xanthan fractions in aqueous solution. Macromolecules, 15, 874-879.
Pai V., Srinivasarao M., and Khan S.A.(2002).Evolution of Microstructure and Rheology in Mixed Polysaccharide. Macromolecule, 35, 1699-1707.
Pretima M., Stefan K., Miles W.N., and Hember. (1997).Sequence-Dependent Kinetic trapping of biphasic structures in maltodextrin-whey protein gels. Carbohydrate Polymrs, 32, 141-153.
Richardson P.H., Clark A.H., Russell A.L., Aymard P., and Norton, I.T. (1999). Galactomannan Gelatuon: A Thermal and Rheological Inverstigation Analyzed Using the Cascade Model. Marcomolecules, 32, 1519-1527.
Richardson P.H., and Norton I.T.(1998).Gelation Behavior of Concentrated Loust Bean Gum Solutions. Marcomolecules, 31, 1575-1583.
Richardson P.H., Willmer J., and Foster T.J.(1998).Dilute solution properties of guar and locust beam gum in sucrose solutions. Food Hydrocolloids, 12, 339-348.
Richardson R.K., Ross-Murphy S.B.(1987). Non-linear viscoelasticity of polysaccharide solutions. 2: Xanthan polysaccharide solutions. International Journal of Biological Macromolecules, 9, 257-264.
Press W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. Nnmerical recipes in fortran the art of scientific computing Second Edition. p675-684.
Rochefort W.E., Middleman S.(1987). Rheology of xanthan gum: Salt, Temperature, and strain effects in oscillatory and steady shear experiments.. Journal of Rheology, 31, 337-369.
Sato T., Norisuye T., and Fujita H.(1984).Double-stranded helix of xanthan: dimensional and hydrodynamic properties in 0.1 m aqueous sodium chloride. Macromolecules, 17, 2696-2700.
Scanlan J.C., and Winter H.H.(1991).Composition dependence of the viscoelaticity of end-linked poly(dimethylsiloxan)at the gel point. Macromolecules, 24, 47-54.
Schorsch C., Garnier C., and Doublier J.L.(1997). Viscoelastic properties of xanthan/galactomannan mixtures: comparison of guar gum with locust bean gum. Carbohydrate polymers, 34, 165-175.
Staudinger H. (1932). Die Hochmolekularen Organischer Verbindungen. Springer, Berlin.
Stockmayer W.H.(1943).Theory of Molecular Size Distribution and Gel Formation in Branched-Chain Polymers. The Journal of Chemical Physics, 11, 45-55.
Stockmayer W.H.(1944).Theory of Molecular Size Distribution and Gel Formation in Branched Polymers Ⅱ.General Cross Linking. The Journal of Chemical Physics, 12, 125-131.
Searle M. S., Westwell M. S., and Williams D. H.(1995). Application of a Generalised Enthalpy-Entropy Relationship to Binding Co-operativity and Weak Associations in Solution. Journal of the Chemical Society. Perkin Transactions, 2, 141-151.
Tan H.M., Moet A., Hiltner A. and Bear E.(1983). Thermoreversible Gelation of Atactic Polystyrene Solutions. Macromolecules, 16, 28-34.
Tanaka F., and Ishida M. (1999). Thermoreversible Gelation with Two-Component Networks. Macromolecules, 32, 1271-1283.
Te Nijenhuis K (1997). Thermoreversible Networks Viscoelastic Properties and Structure of Gels. Berlin ;Springer,c1997.New York.
Te Nijenhuis K (1981). Investigation into The Ageing Process in Gels of Gelatin/Water Systems by The Measurement of Their Dynamic Moduli. Colloid and Polymer Science, 259, 1017-1026.
Watase M., Nishinar K., Clark A.H., and Ross-Murphy S.B. (1989). Differential Scanning Calorimetry, Rheology, X-ray, and NMR of Very Concentrated Agarose Gels. Marcomolecules, 22, 1196-1201.
Winter H.(1986). Analysis of linear viscoelasticity of a crosslinking polymer at gel point. Journal of Rheology, 30, 367-382.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔