(3.237.178.91) 您好!臺灣時間:2021/03/07 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林育璋
研究生(外文):Yu-Jang Lin
論文名稱:以水膠應用於人工敷料之研發
論文名稱(外文):Research and Development of Hydrogels for Wound Dressing Applications
指導教授:林鴻儒林鴻儒引用關係
指導教授(外文):Hong-Ru Lin
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:69
中文關鍵詞:異丙基丙烯醯胺丙烯酸黏土γ-ray水膠燒燙傷敷料
外文關鍵詞:NIPAAm、Acrylic acid、clay、γ-ray、hydrogel、wound dressing
相關次數:
  • 被引用被引用:8
  • 點閱點閱:1416
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:486
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,我們以常溫聚合法及γ-ray照射聚合法製備感溫性水膠,應用於人工敷料上。所製備之水膠包含純異丙基丙烯醯胺[Poly(N-isopropyl acrylamide), NIPAAm]及丙烯酸[(Acrylic acid), AAc]與NIPAAm共聚合之P(NIPAAm-co-AAc)水膠。針對所製備之水膠進行相轉移溫度(LCST)、機械性質及膨潤度之測定,探討其膨潤及去膨潤動力學,並研究其藥物釋放情形,結果顯示:添加AAc可提高PNIPAAm水膠之LCST及膨潤度,尤其是γ-ray照射聚合法,更能提升PNIPAAm水膠之膨潤度。添加奈米黏土(clay)於水膠時,兩種聚合方法皆能增加水膠之機械強度並且抑制水膠的膨潤度,顯示奈米clay在水膠內扮演著交聯劑的角色。在藥物釋放上,兩種聚合方法之水膠在添加奈米clay後,奈米clay可以延緩PNIPAAm水膠之藥物Vancomycin的釋放,尤其以γ-ray照射聚合法更為明顯,兩種聚合方法皆顯示NIPAAm與AAc共聚合水膠之藥物釋放速率比PNIPAAm水膠快。
最後本研究利用γ-ray照射聚合法將水膠接枝於PU上,發現吸收劑量15 ~ 35 kGy皆能成功地將水膠接枝於PU上,其接枝率為26 ~ 32 %。
In this study, thermosensitive hydrogels to be used as artificial wound dressings were prepared by polymerization at room temperature and polymerization via γ-ray irradiation, respectively. P(N-isopropyl acrylamide) (PNIPAAm) hydrogel and its copolymer with acrylic acid (AAc), (P(NIPAAm-co-AAc) hydrogels were prepared. The low critical solution temperature (LCST), swelling, and mechanical properties of these hydrogels were determined and their swelling-deswelling kinetics and drug controlled release behavior were investigated. The results indicate that copolymerization of AAc with NIPAAm raised the LCST and degree of swelling of PNIPAAm hydrogels, especially in the case of polymerization via γ-ray irradiation. In both preparation methods, the incorporation of nano-clay into the hydrogels inhibited the degree of swelling, suggesting nano-clay played a role as a cross-linking agent inside the hydrogels. In drug controlled release studies, vancomycin was effectively sustained release from nano-clay incorporated hydrogels in both methods. The ability of sustained release of vancomycin increased with increasing the concentration of incorporated nano-clay, especially for γ-ray irradiated PNIPAAm hydrogels. The release of vancomycin from P(NIPAAm-co-AAc) hydrogels was faster than that from PNIPAAm hydrogels in both methods. Finally, hydrogels were grafted onto porous PU substrate by γ-ray irradiation. Hydrogels were successfully grafted onto PU substrate with 26~32 % grafting efficiency in the dosage between 15~35 kGy.
目 錄
致謝 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧I
中文摘要 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧II
英文摘要 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧III
目錄 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧VII
表目錄 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧VIII
圖目錄 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧IX
第一章 緒論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1.1研究背景 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1.2研究內容 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧2
第二章 文獻回顧 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3
2.1 國內、外於創傷敷料之研究情況 ‧‧‧‧‧‧‧‧‧3
2.2水膠簡介 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4
2.3智慧型水膠 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5
2.3.1.溫度應答型水膠 ‧‧‧‧‧‧‧‧‧‧‧‧5
2.3.2.酸鹼應答型水膠 ‧‧‧‧‧‧‧‧‧‧‧‧6
2.3.3.酸鹼/溫度應答型 ‧‧‧‧‧‧‧‧‧‧‧‧6
2.3.4.其他感應型水膠 ‧‧‧‧‧‧‧‧‧‧‧‧7
2.4奈米複合材料 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧7
2.4.1.高分子/黏土複合材料之種類 ‧‧‧‧‧‧‧‧‧8
2.5無機層狀材料.黏土 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧9
2.6 γ-ray照射之反應機制 ‧‧‧‧‧‧‧‧‧‧‧‧‧10
2.7 以γ-ray照射法製備複合材料之研究 ‧‧‧‧‧‧‧‧‧11
第三章 以常溫聚合法及γ-ray照射聚合法製備水膠及其物性分析 ‧‧12
3.1前言 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧12
3.2材料與方法 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧13
3.2.1.實驗藥品 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧13
3.2.2.以常溫聚合法製備P(NIPAAm)水膠 ‧‧‧‧‧‧‧‧15
3.2.3.以常溫聚合法製備P(NIPAAm)/clay水膠 ‧‧‧‧‧‧16
3.2.4.以常溫聚合法製備P(NIPAAm-co-AAc)水膠 ‧‧‧16
3.2.5.以常溫聚合法製備不同pH值下含有clay之
P(NIPAAm-co-AAc)水膠 ‧‧‧‧‧‧‧‧‧‧16
3.2.6.以γ-ray照射聚合法製備水膠 ‧‧‧‧‧‧‧‧‧‧18
3.2.7.FTIR光譜分析 ‧‧‧‧‧‧‧‧‧‧19
3.2.8.X射線繞射儀(XRD)分析 ‧‧‧‧‧‧‧‧‧‧19
3.2.9.TEM形態觀察 ‧‧‧‧‧‧‧‧‧‧19
3.2.10.感溫性測試 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧19
3.2.11.熱差式掃描卡計(DSC)測試 ‧‧‧‧‧‧‧‧19
3.2.12.膨潤度測試 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧20
3.2.13.SEM形態觀察 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧20
3.2.14.膨潤/去膨潤研究 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧20
3.2.15.機械強度測試 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧20
3.2.16.藥物釋放研究 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧21
3.3結果與討論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧23
3.3.1.常溫聚合法與γ-ray照射聚合法之成分比較 ‧‧‧‧23
3.3.1.FTIR圖譜分析 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧23
3.3.2.X射線繞射儀(XRD)分析 ‧‧‧‧‧‧‧‧‧26
3.3.3.clay在水膠間分散程度觀察 ‧‧‧‧‧‧‧‧‧28
3.3.4.感溫性測試 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧29
3.3.5.膨潤度測試 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧34
3.3.6.SEM型態觀察 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧38
3.3.7.膨潤/去膨潤研究 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧42
3.2.8.機械強度測試 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧43
3.3.9.藥物釋放探討 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧44
3.4 結論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧46
第四章以γ-ray照射聚合法製備PU /水膠複材及其藥物釋放研究 ‧47
4.1 前言 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧47
4.2 材料與方法 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧48
4.2.1.藥品 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧48
4.2.2.多孔型PU膜之製備 ‧‧‧‧‧‧‧‧‧48
4.2.3.PU/水膠複材製備 ‧‧‧‧‧‧‧‧‧48
4.2.4.水膠/PU複材接枝率測試 ‧‧‧‧‧‧‧‧‧49
4.2.5.SEM形態觀察 ‧‧‧‧‧‧‧‧‧49
4.2.6.膨潤/去膨潤研究 ‧‧‧‧‧‧‧‧‧50
4.2.7.壓縮測試 ‧‧‧‧‧‧‧‧‧50
4.2.8.拉伸試驗 ‧‧‧‧‧‧‧‧‧51
4.2.9.動物實驗 ‧‧‧‧‧‧‧‧‧51
4.3 結果與討論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧52
4.3.1.接枝率之探討 ‧‧‧‧‧‧‧‧‧52
4.3.2.SEM截面形態觀察 ‧‧‧‧‧‧‧‧‧53
4.3.3.膨潤/去膨潤研究 ‧‧‧‧‧‧‧‧‧55
4.3.4 壓縮測試 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧56
4.3.5 拉伸試驗 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧57
4.3.6 動物實驗 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧60
4.4 結論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧62
第五章 結論 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧63
參考文獻 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧65
作者簡介 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧70












表目錄
表3.1以常溫聚合法製備水膠之進料組成 ‧‧‧‧‧‧‧‧‧‧‧17
表3.2以γ-ray照射聚合法製備水膠之進料組成 ‧‧‧‧18
表3.3以常溫聚合水膠之LCST ‧‧‧‧‧‧‧‧‧‧‧31
表3.4以γ.ray照射聚合水膠之LCST ‧‧‧‧‧‧‧‧‧‧‧32
表3.5常溫聚合水膠在20℃及37℃之含水量 ‧‧‧‧‧‧‧‧‧‧‧33
表3.6常溫聚合水膠從20℃升溫至37℃時之體積變化 ‧‧‧‧33
表3.7壓縮測試列表 ‧‧‧‧‧‧‧‧‧‧‧43
表4.1以γ.ray照射聚合法製備水膠之進料組成 ‧‧‧‧49
表4.2、接枝率比較表 ‧‧‧‧‧‧‧‧‧‧‧52
表4.3壓縮測試列表 ‧‧‧‧‧‧‧‧‧‧‧56
表4.4拉伸試驗數據比較表 ‧‧‧‧‧‧‧‧‧‧‧59






圖目錄
圖2.1 PNIPAAm水膠之LCST現象圖 ‧‧‧‧‧‧‧‧‧‧‧6
圖2.2 高分子/黏土複合材料分散程度圖 ‧‧‧‧‧‧‧‧‧‧‧8
圖2.3 Smectite Clay 的理論結構 ‧‧‧‧‧‧‧‧‧‧‧10
圖3.1 Vancomycin 結構圖 ‧‧‧‧‧‧‧‧‧‧‧14
圖3.2 水膠模具圖 ‧‧‧‧‧‧‧‧‧‧‧15
圖3.3 藥物釋放裝置圖 ‧‧‧‧‧‧‧‧‧‧‧22
圖3.4 PNIPAAm、PAA、P(NIPAAm-co-AAc)水膠FTIR光譜圖 ‧‧24
圖3.5 常溫聚合法FTIR光譜圖 ‧‧‧‧‧‧‧‧‧‧‧25
圖3.6 γ-ray照射聚合法FTIR光譜圖 ‧‧‧‧‧‧‧‧‧‧‧25
圖3.7 常溫聚合法clay與水膠之X.ray繞射圖 ‧‧‧‧‧‧‧‧‧‧‧27
圖3.8 γ-ray照射聚合法clay與水膠之X-ray繞射圖 ‧‧‧‧27
圖3.9 常溫聚合法之TEM圖 ‧‧‧‧‧‧‧‧‧‧‧28
圖3.10 γ-ray照射聚合法之TEM圖 ‧‧‧‧‧‧‧‧‧‧‧29
圖 3.11 不同濃度之P(NIPAAm)水膠感溫性測試 ‧‧‧‧‧‧‧‧‧‧‧32
圖3.12 不同濃度NIPAAm膨潤度曲線圖 ‧‧‧‧‧‧‧‧‧‧‧36
圖3.13 不同濃度P(NIPAAm-co-AAc)膨潤度曲線圖‧‧‧‧‧‧‧‧‧‧‧36
圖3.14 照射劑量為15 kGy水膠膨潤度曲線圖 ‧‧‧‧‧‧‧‧‧‧‧37
圖3.15 照射劑量為35 kGy水膠膨潤度曲線圖 ‧‧‧‧‧‧‧‧‧‧‧37
圖3.16 常溫聚合水膠之SEM圖 ‧‧‧‧‧‧‧‧‧‧‧39
圖3.17.常溫聚合水膠之SEM圖 ‧‧‧‧‧‧‧‧‧‧‧40
圖3.18 γ-ray照射聚合水膠之SEM圖 ‧‧‧‧‧‧‧‧‧‧‧41
圖3.19 吸收劑量為25 kGy各組成之膨潤/去膨潤研究‧‧‧‧‧‧‧‧‧‧42
圖3.20 常溫聚合法之藥物釋放曲線圖 ‧‧‧‧‧‧‧‧‧‧‧45
圖3.21 γ-ray照射聚合法之藥物釋放曲線圖 ‧‧‧‧‧‧‧‧‧‧‧45
圖4.1 PU/水膠複材之SEM圖 ‧‧‧‧‧‧‧‧‧‧‧54
圖4.2 吸收劑量為25 kGy各組成水膠之膨潤/去膨潤研究 ‧‧‧‧55
圖4.3 G25co2C5拉伸試驗圖 ‧‧‧‧‧‧‧‧‧‧‧58
圖4.4 G25PU-g-co2C5 ‧‧‧‧‧‧‧‧‧‧‧58
圖4.5 應力-應變曲線圖 ‧‧‧‧‧‧‧‧‧‧‧59
圖4.6 動物實驗照片 ‧‧‧‧‧‧‧‧‧‧‧61
參 考 文 獻
1.A. B. Lugao, S. M. Malmonge, Use of radiation in the production of hydrogels, NIMB 185 (1986) 37-42.
2.S. Y. Lin, K. S. Chen, L. R. Chu, Design and evaluation of drug-loaded wound dressing having thermoresponsive, absorptive and easy peeling properties, Biomaterial 22 (2001) 2999-3004.
3.T. C. Wen, Y. J. Wang, et al. The effect of DMPA units on ionic conductivity of PEG-DMPA-IPDI waterborne polyurethane as single-ion electrolytes, Polymer 40 (1999) 3979-3988.
4.T. C. Wen, S. S. Luo, C. H. Yang, Ionic conductivity of polymer electrolytes derived from various diisocyanate-based waterborne polyurethanes, Polymer 41 (2000) 6755-6764.
5.R. A. Stile and K. E. Healy, Synthesis of hydrogels: Environmentally sensitive hydrogels based on N-isopropylamide, Methods of Tissue Engineering 57 (2002) 663-680.
6.R. A. Stile, W. R. Burghardt and K. E. Healy, Synthesis and Characterization of Injectable Poly(N-isopropylamide)-Based Hydrogels That Support Tissue Formation in Vitro, Macromolecules 32(1999) 7370-7379.
7.R. Mazzei, E. Smolko, D. Tadey, L. Gizzi, Radiation grafting of NIPAAm on PVDF nuclear track membranes, NIMB 170(2000) 419-426.
8.Z. Maolin, L. Ning, L. Jun, Y. Min, et al. Radiation preparation of PVA-g-NIPAAm in a homogeneous system and its application in controlled release, Radiation Physics and Chemistry 57 (2000) 481-484.
9.J. Li, M. Zhai, M. Yi, H. Gao, H. Ha, Radiation grafting of thermo-sensitive poly(NIPAAm) onto silicone rubber, Radiation Physics and Chemistry 55(1999) 173-178.
10.S.Y. Lin, K. S. Chen, R. C. Liang, Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water, Polymer 40(1999) 2619-2624.
11.M. V. Deshmukh, A. A. Vaidya, M.G. Kulkarni, et al. LCST in poly(N-isopropylacrylamide) copolymers: high resolution proton NMR investigations, Polymer 41 (2000) 7951-7960.
12.M. R. Guilherme, R. da Silva, A. F. Rubira, et al. Thermo-sensitive hydrogels membranes from PAAm networks and entangles PNIPAAm: effect of temperature, cross-linking and PNIPAAm contents on the water uptake and permeability, Reactive & Functional Polymer 61 (2004) 233-243.
13.M.K. Yoo, Y. K. Sung, et al. Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel, Polymer 41 (2000) 5713-5719.
14.X. Z. Zhang, Y. Y. Yang, F. J. Wang, and T. S. Chung, Thermosensitive Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels with Expanded Network Structures and Improved Oscillating Swelling-Deswelling Properies, Langmuir 18(2002) 2013-2018.
15.X. Xia, J. Yih,N. A. D’Douza, Z. Hu, Swelling and mechanical behavior of poly(N-isopropylacrylamide)/Namotmorillonite layered silicates composite gels, Polymer 44 (2003) 3389-3393.
16.W. F. Lee, Y. T. Fu, Effect of Montmorillonite on the Swelling Behavior and Drug-Release Behavior of Nanocomposite Hydrogels, Journal of Applied Polymer Science, 89 (2003) 3652-3660.
17.K. Haraguchi, T. Takehisa, and S. Fan, Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay, Macromolecules 35(2002) 10162-10171.
18.K. Haraguchi, T. Takehisa, et al. Cpompositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay, Macromolecules 2003, 36, 5732-5741.
19.X. Z. Zhang, Y. Y. Yang, et al. Preparation and Characterization of Fast Response Macroproous Poly(N-isopropylacrylamide) Hydrogel, Langmuir 17 (2001) 6094-6099.
20.S. Y. Lin, K. S. Chen, et al. Drying methods affecting the particle sizes, phase transition, deswelling/reswelling process and morphology of poly(N-isopropylacrylamide) microgel beads, Polymer 40 (1999) 6307-6312.
21.H.Ichikawa, Y.Fukumori, A Novel Positively Thermosensitive Controlled-Release Microcapsule With Membrane of Nano-Sized Poly(N-isopropylacrylamide) Gel Dispersed in Ethylcellulose Matrix, Journal of Controlled Release 63 (2000) 107-119.
22.D. C. Coughlan, F. P. Quilty, O. I. Corrigan, Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release form thermoresponsive poly(N- isopropylacrylamide) hydrogels, Journal of Controlled Release 98 (2004) 97-114.
23.K. Obara, et al. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing- impaired db/db mice, Biomaterials 24 (2003) 3437-3444.
24.K. Masuoka, et al. The interaction of chitosan with fibroblast growth factor-2 and its protection from inactivation, Biomaterials 26 (2005) 3277-3284.
25.V. I. Yannas, J. F. Burke, et al. Design of artifical skin. I. Basic design principles, Journal of Biomaterial Material Release 14 (1980) 65-81.
26.V. I. Yannas, J. F. Burke, et al. Wound tissue can utilze a polymeric template to synthesize a functional extension of skin, Science 215 (1982) 174-176.
27.F. H. Lin, T.M.Chen, K.S. Chen, et al. An animal study of a noveal tri-layer wound dressing material-non-woven fabric grafted with N-isopropylacrylamide and gelatin, Materials Chemical and Physics, 64 (2000) 189-195.
28.S. Y. Lin, K.S. Chen, R. C. Liang, Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties, Biomaterial, 22 (2001) 2999-3004.
29.M. T. Razzak, D. Darwis, et al. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing, Radiation Pysics and Chemistry 62 (2001) 107-113.
30.K. S. Chen, J. C. Tsai, C. W. Chou, et al. Effects of additives on the photo-induced grafting polymerization of N-isopropylacrylamide gel onto PET film and PP nonwoven fabric surface, Material Science and Engineering C 20 (2002) 203-208.
31.M. Walker, J. A. Hobot, et al. Scanning electron microscopic examination of bacterial immobilistation in a carboxymethyl celluose (AQUACEL) and alginate dressings, Biomatrials 24 (2003) 883-890.
32.S. Tanodekaew, et al. Preparation of acrylic grafted chitin for wound dressing application, Biomatrials 25 (2004) 1453-1460.
33.B. Balakrishnan, M. Mohanty, et al. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin, Biomatrials 26 (2005) 6335-6342.
34.余勝雄,利用二階段自由基共聚合製備酸鹼應答型水膠及性質探討,中興大學化學工程研究所,民國九十一年。
35.X. Z. Zhang, D. Q. Wu, C. C. Chu, Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels, Biomaterials 25(2004) 3793-3805.
36.W. Liu, B. Zhang, W. W.Lu, X. Li, D. Zhu, K. D. Yao, Q. Wang, C. Zhao, C. Wang, A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide) -g-methylcelluose copolymer hydrogel, Biomaterials 25 (2004) 3005-3012.
37.R. Dinarvand, A. D’Emanuele, The use of thermoresponsive hydrogels for on-off release of molecules, Journal of Controlled Release 36 (1995) 221-227.
38.W. F. Lee, W. Y. Yuan, Thermoreversible hydrogels ⅩⅠ: Effct of Salt on the Swelling Properties of the (N- isopropylacrylamide-co- Sodium 2-Acrylamido-2-methylpropyl Sulfonate) Copolymeric Hydrogels, Journal of Applied Polymer Science 79 (2001) 1675-1684.
39.Lisa B. P. and N. A. Peppas, Dyamic and equilibrium swelling behaviour of pHsensitive hydrogels containing 2-hydroxyethyl methacrylate, Biogmaterials (1990) 11 635-643.
40.R. S. Rodriguez, K. F. Arndt, Random copolymer of N-isopropylacrylamide and methacrylic acid monomers with hydrophobic spacers: pH-tunable temperature sensitive materials, European Polymer Journal 40 (2004) 1931-1946.
41.J. Ostroha, M. Pong, et al. Controlling the collapse/swelling transition incharged hydrogels, Biomaterials 25 (2004) 4345-4353.
42.Y. H. Yu, J. M. Yeh, S. J. Liou, et al. Preparation and Properties of Polyimide-Clay Nanocomposite Materials for Anticorrosion, Journal of Applied Polymer Science 92 (2004) 3573-3582.
43.K. P. Pramoda, T. Liu, Z. Liu, C. He, H. J. Sue, Thermal degradation behavior of polyamide 6/clay nanocomposites, Polymer Degradation and Stability 81 (2003) 47-56.
44.A. Ranade, et al. Exfoliated and intercalated polyamide-imide nanocomposites with montmorillonite, Polymer 43 (2002) 3759-3766.
45.林宏益,聚氨基甲酸酯彈性體/黏土奈米複合材料之製備與物性研究,中原大學化學學系研究所,民國九十一年。
46.N. A.Churochkina, S. G. Starodoubtsev, Swelling and collapse of the gel composites based on neutral and slightly charged poly(acrylamide) gels containing Na-montmorillonite, Polymer Gels and Networks 6 (1998) 205-215.
47.M. Liao, J. Zhu, et al. Preparation and Structure and Mechanical Properties of Poly(Styrene-b-butadiene)/Clay Nanocomposites, Journal of Applied Polymer Science, 92 (2004) 3430-3434.
48.W. F. Lee, L. G. Yang, Superabsorbent Polymeric Materials. XII. Effect of Montmorillonite on Water Absorbency for poly(Sodium Acrylate) and Montmorillonite Nanocomposite Superabsorbents, Journal of Applied Polymer Science, 92 (2004) 3422-3429.
49.E. Karadag, D. Saraydin, O. Guven, Water absorbency studies of γ-radiation crosslinked poly(acrylamide-co-2,3-dihydroxybutanedioic acid) hydrogels, NIMB 225 (2004) 489-496.
50.潘家寅, 中華民國54年, 放射性元素之工業應用, 台灣中華書局, pp.10-13, 141-154.
51.R. Mazzei, E. Smolko, D. Tadey, L. Gizzi, Radiation grafting of NIPAAm on PVDF nuclear track membranes, NIMB 170(2000) 419-426.
52.Z. Maolin, L. Ning, L. Jun, Y. Min, et al. Radiation preparation of PVA-g-NIPAAm in a homogeneous system and its application in controlled release, Radiation Physics and Chemistry 57(2000) 481-484.
53.J. Li, M. Zhai, M. Yi, H. Gao, H. Ha, Radiation grafting of thermo-sensitive poly(NIPAAm) onto silicone rubber, Radiation Physics and Chemistry 55(1999) 173-178.
54.R. P. Kyoung, C. N. Young, Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties, Radiation Physics and Chemistry 67 (2003) 361-365.
55.Z. Ajji, I. Othman, J. M. Rosiak, Production of hydrogel wound dressings using gamma radiation, NIMB 229 (2005) 375-380.
56.H. Omidian, et al. Advamces in superporous hydrogels, Journal of Controlled release 102 (2005) 3-12.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔