跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 07:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林保良
研究生(外文):Paoul-Lieang Lin
論文名稱:時間延遲大型切換系統之穩定性分析
論文名稱(外文):Stability Analyses of Time-delay Large-scale Switched Systems
指導教授:邱俊賢邱俊賢引用關係
指導教授(外文):Juing-Shian Chiou
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:64
中文關鍵詞:切換系統穩定性分析時間延遲
外文關鍵詞:Switched SystemsStability AnalysesTime-delay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用狀態變數切換法則及時間停留切換法則,針對時間延遲大型切換系統做穩定性的探討。其中,使用狀態變數切換法則,是依據李亞普諾穩定定理,導出三種穩定條件,其穩定條件,適用於所有的獨立系統均可以不穩定。而使用時間停留切換法則,是依據狀態變數響應,求出停留在穩定的獨立系統的總時間與停留在不穩定的獨立系統的總時間之比值,以保證整個時間延遲大型切換系統是穩定,其結果有與時間延遲無關及與時間延遲有關的二種準則。
The stability analyses of time-delay large-scale switched systems are investigated in this thesis. Two important methods are used to construct the switching laws for the stability analyses of time-delay large-scale switched systems. One is the state variable switched method; the other is the dwell-time switched method. Essentially, the former is that there exists state switching strategy to make the whole system stable when all the individual subsystems are unstable by means of Lyapunov stability theorem. The latter is that the total activation time ratio of stable subsystems to unstable systems will be also determined via the state solution, and the sufficient stability conditions will be derived for the time-delay large-scale switched systems with delay-independent criteria and delay-dependent criteria.
目  錄
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VI

第一章 緒論 1
1-1. 研究動機與文獻回顧 1
1-2. 主要貢獻 4
1-3. 論文架構 4
第二章 時間延遲大型切換系統之穩定性研究:狀態變數切換法則 5
2-1. 簡介 5
2-2. 系統介紹與問題描述 5
2-3. 時間延遲大型切換系統之穩定條件 9
2-4. 例題 20
2-5. 結論 22
第三章 與時間延遲無關的時間延遲大型切換系統之穩定性研究:時間切換法則
28
3-1. 簡介 28
3-2. 系統介紹與問題描述 28
3-3. 與時間無關的穩定條件 30
3-4. 例題 35
3-5. 結論 37
第四章 與時間延遲有關的時間延遲大型切換系統之穩定性研究:時間切換法則
44
4-1. 簡介 44
4-2. 系統介紹與問題描述 44
4-3. 與時間有關的穩定條件 46
4-4. 例題 51
4-5. 結論 53
第五章 結論與未來研究 60
5-1. 結論 60
5-2. 未來研究 60
參考文獻 62

圖 目 錄

圖2-1 定理2.3中的 和 範圍 23
圖2-2 定理2.5中的 和 範圍 23
圖2-3a 獨立系統1的狀態響應 24
圖2-3b 獨立系統2的狀態響應 24
圖2-3c 獨立系統3的狀態響應 25
圖2-4a 狀態 的狀態響應 25
圖2-4b 狀態 的狀態響應 26
圖2-4c 狀態 的狀態響應 26
圖2-5 [1, 1.1]秒的切換結果 27
圖3-1a 獨立系統1 之狀態 的狀態響應 38
圖3-1b 獨立系統1 之狀態 的狀態響應 38
圖3-1c 獨立系統1 之狀態 的狀態響應 39
圖3-2a 獨立系統2 之狀態 的狀態響應 39
圖3-2b 獨立系統2 之狀態 的狀態響應 40
圖3-2c 獨立系統2 之狀態 的狀態響應 40
圖3-3a 獨立系統3 之狀態 的狀態響應 41
圖3-3b 獨立系統3 之狀態 的狀態響應 41
圖3-3c 獨立系統3 之狀態 的狀態響應 42
圖3-4a 時間延遲大型切換系統(3.26)之 的狀態響應 42
圖3-4b 時間延遲大型切換系統(3.26)之 的狀態響應 43
圖3-4c 時間延遲大型切換系統(3.26)之 的狀態響應 43
圖4-1a 獨立系統1 之狀態 的狀態響應 54
圖4-1b 獨立系統1 之狀態 的狀態響應 54
圖4-1c 獨立系統1 之狀態 的狀態響應 55
圖4-2a 獨立系統2 之狀態 的狀態響應 55
圖4-2b 獨立系統2 之狀態 的狀態響應 56
圖4-2c 獨立系統2 之狀態 的狀態響應 56
圖4-3a 獨立系統3 之狀態 的狀態響應 57
圖4-3b 獨立系統3 之狀態 的狀態響應 57
圖4-3c 獨立系統3 之狀態 的狀態響應 58
圖4-4a 時間延遲大型切換系統(4.29)之 的狀態響應 58
圖4-4b 時間延遲大型切換系統(4.29)之 的狀態響應 59
圖4-4c 時間延遲大型切換系統(4.29)之 的狀態響應 59
參考文獻
[1] M. S. Branicky, “Analysis of continuous switching systems: Theory and examples,” Proceedings. of the American Control Conference, Baltimore, MD,June, pp. 3110-3114, 1994.
[2] R. A. Decarlo, M. S. Branicky, S. Pettersson and B. Lennartson, “Perspectives and results on the stability and stabilizability of hybrid systems,” Proceedings of the IEEE, Vol. 88, pp. 1069-1082, 2000.
[3] P. J. Antsaklis, “A brief introduction to the Theory and Applications of Hybird systems,” Proceedings of the IEEE, Vol. 88, pp. 879-887, 2000.
[4] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Trans. on Automatic Control, Vol. 43, pp. 475-482, 1998.
[5] D. Liberzon and A. S. Mores, “Basic problems in stability and design of switched systems”, IEEE Control Systems Magazine, 19, pp. 59-70, 1999.
[6] K. S. Narendra and J. Balakrishnan, “A common Lyapunov function for stable LTI systems with commuting A-matrices,” IEEE Trans. on Automatic Control, Vol. 39, pp. 2469-2471, 1994.
[7] C. F. Matrtin and W. P. Dayawansa, “On the existence of a Lyapunov function for a family of switching systems,” In Proc. 35th Conf. Decision and Control, Kobe, Japan, Dec. pp. 1820-1821, 1996.
[8] R. N. Shorten and K. S. Narendra, “On the stability and existence of common Lyapunon function for stable linear switching systems,” In Proc. 37th Conf. Decision and Control, Tampa, Florida, USA, Dec. pp. 3723-3724, 1998.
[9] M. Johansson and A. Rantzer, “Computation of piecewise quadratic Lyapunov function for hybrid systems,” IEEE Trans. on Automatic Control, Vol. 43, pp. 555-559, 1998.
[10] R. N. Shorten and K. S. Narenda, “Necessary and sufficient conditions for the existenxe of a common quadratic Lyapunov function for two stable second order linear time-invariant systems,” Proceedings. of the American Control Conference, San Diego, California, June, pp. 1410-1414, 1999.
[11] K. Wulff, R, Shorten and P. Curran, “On the relationship between matrix pencil eigenvalue criteria and the choice of Lyapunov function for the analysis of second order switching systems,” Proceedings. of the American Control Conference, Anchorage, AK, May, pp. 1248-1253, 2002.
[12] H. Ye, A. Michel and L. Hou, “Stability theory for hybrid dynamical systems,” IEEE Trans. on Automatic Control, Vol. 43, pp. 461-474, 1999.
[13] Z. Li, C. B. Soh and X. Xu, “Lyapunov stability of a class of hybrid dynamic systems,” Automatica, Vol. 36, pp. 297-302, 2000.
[14] B. Hu, G. Zhai and A. N. Michel, “Common quadratic Lyapunov-like function with associated switching regions for two unstable second-order LTI systems,” In Proc. 39th Conf. Decision and Control, Svdnev. Australia, Dec. pp. 1391-1396, 2000.
[15] Z. G. Li, C. Y. Wen and Y. C. Soh, “Stabilization of a class of switched systems via designing switching laws,” IEEE Trans. on Automatic Control, Vol. 46, pp. 665-670, 2001.
[16] X. Xu and P. J. Antsaklis, “Stabilization of second-order LTI switched systems,” Int. J. Control, Vol. 73, pp. 1261-1279, 2000.
[17] Kai Wulff, R. Shorten and P. Curran, “On the -region and the uniform asymptotic stability of classes of second order parameter-varying and switched systems,” Int. J. Control, Vol. 75, pp. 812-823, 2002.
[18] X. D. Koutsoukos and P. J. Antsaklis, “Design of stabilizing switching control laws for discrete- and continuous-time linear systems using piecewise-linear Lyapunov functions,” Int. J. Control, Vol. 75, pp. 932-945, 2002.
[19] B. Hu, G. Zhai and A. N. Michel, “Common quadratic Lyapunov-like functions with associated switching regions for two unstable second0order LTI systems,” Int. J. Control, Vol. 75, pp. 1127-1135,2002.
[20] H. Ishii, T. Basar and R. Tempo, “Randomized algorithms for synthesis of switching rules for multimodal systems,” IEEE Trans. on Automatic Control, Vol. 50, pp. 754-767, 2001.
[21] M. Akar and K. S. Narendra, “On the existense of a common quadratic Lyapunov function for two stable second order LTI discrete-time systems,” Proceedings. of the American Control Conference, Arlington, VA, June, pp. 2572-2577, 2001.
[22] J. Daafouz, P. Riendinger and C. Iung, “Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach,” IEEE Trans. on Automatic Control, Vol. 47, pp. 1883-1887, 2002.
[23] S. H. Lee, T. H. Kim and J. T. Lim, “Anew stability analysis of switched systems,” Automatica, Vol. 36, pp. 917-922, 2000.
[24] J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time,” In Proc. 38th Conf. Decision and Control, Phoenix, Arizona, USA, Dec. pp. 2655-26690, 1999.
[25] G. Zhai, B. Hu, K. Yasuda and A. N. Michel, “Stability analysis of switched systems with stable and unstable subsystems: An average swell time approach,” Proceedings. of the American Control Conference, Chicago, lllinois, June, pp. 200-204, 2000.
[26] G. zhai, B. Hu, K. Yasuda and A. N. Michel, “Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach,” Int. J. Systems Science, Vol. 32, pp, 1055-1061, 2001.
[27] Z. G. Li, B. Hu, C. Y. wen, Y. C. Soh and A. N. Michel, “A stable transformation for switched linear systems,” Proceedings. of the American Control Conference, Arlington, VA, June, pp. 331-336, 2001.
[28] W. J. Wang and L. G. Man, “Stabilization and estimation for perturbed discrete time-delay large-scale systems,” IEEE Trans. on Automatic Control, Vol. 42, pp. 1277-1282, 1997.
[29] P. L. Liu and T. J. Su, “Robust stability for uncertain large-scale time-delay systems with delay dependence,” Proceedings of the 32nd IEEE conference on Decision and Control, pp. 15-17, 1993.
[30] B. Xu, “On delay-independendent stability of large-scale systems with time delays,” IEEE Trans. on Automatic Control, Vol. 40, pp. 930-933, 1995.
[31] C. H. Chou and C. C. Cheng, “A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems,” IEEE Trans. on Automatic Control, Vol. 48, pp. 1213-1217, 2003.
[32] H. Wu, “Decentralized adaptive robust control for a class of large-scale systems including delayed state perturbations in the interconnections,” IEEE Trans. on Automatic Control, Vol. 47, pp. 1745-1751, 2002.
[33] Z. H. Guan, Y. Q. Liu and X. C. Wen, “Decentralized stabilization of singular and time-delay large-scale control systems with impulsive solutions,” IEEE Trans. on Automatic Control, Vol. 40, pp. 1437-1441, 1995.
[34] J. T. Tsay, P. L. Liu and T. J. Su, “Robust stability for perturbed large-scale time-delay systems,” IEE Proceedings-Control Theory and Applications, Vol. 143, pp. 233-236, 1996.
[35] M. A. Wicks, P. Peleties and R. A. DeCarlo, “Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems,” Eur. J. Control, 4(2), pp. 140-147, 1988
[36] Zhou, K. and Khargonekar, P. P., Robust stabilization of linear systems with norm-bounded time-varying uncertainty. System Control Lett., 10, 17-20, 1988.
[37] S. D. Brierley, J. N. Chiasson, E. B. Lee and S. H. Zak, “On stability independent of delay for linear systems,” IEEE Trans. Automat. Control, 27, pp. 252-254, 1982.
[38] P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.
[39] V. B. Kolmanovskii and V. R. Nosov, Stability of Function Differential Equation, Academic Press, London, 1986.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top