|
參考文獻 [1] M. S. Branicky, “Analysis of continuous switching systems: Theory and examples,” Proceedings. of the American Control Conference, Baltimore, MD,June, pp. 3110-3114, 1994. [2] R. A. Decarlo, M. S. Branicky, S. Pettersson and B. Lennartson, “Perspectives and results on the stability and stabilizability of hybrid systems,” Proceedings of the IEEE, Vol. 88, pp. 1069-1082, 2000. [3] P. J. Antsaklis, “A brief introduction to the Theory and Applications of Hybird systems,” Proceedings of the IEEE, Vol. 88, pp. 879-887, 2000. [4] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Trans. on Automatic Control, Vol. 43, pp. 475-482, 1998. [5] D. Liberzon and A. S. Mores, “Basic problems in stability and design of switched systems”, IEEE Control Systems Magazine, 19, pp. 59-70, 1999. [6] K. S. Narendra and J. Balakrishnan, “A common Lyapunov function for stable LTI systems with commuting A-matrices,” IEEE Trans. on Automatic Control, Vol. 39, pp. 2469-2471, 1994. [7] C. F. Matrtin and W. P. Dayawansa, “On the existence of a Lyapunov function for a family of switching systems,” In Proc. 35th Conf. Decision and Control, Kobe, Japan, Dec. pp. 1820-1821, 1996. [8] R. N. Shorten and K. S. Narendra, “On the stability and existence of common Lyapunon function for stable linear switching systems,” In Proc. 37th Conf. Decision and Control, Tampa, Florida, USA, Dec. pp. 3723-3724, 1998. [9] M. Johansson and A. Rantzer, “Computation of piecewise quadratic Lyapunov function for hybrid systems,” IEEE Trans. on Automatic Control, Vol. 43, pp. 555-559, 1998. [10] R. N. Shorten and K. S. Narenda, “Necessary and sufficient conditions for the existenxe of a common quadratic Lyapunov function for two stable second order linear time-invariant systems,” Proceedings. of the American Control Conference, San Diego, California, June, pp. 1410-1414, 1999. [11] K. Wulff, R, Shorten and P. Curran, “On the relationship between matrix pencil eigenvalue criteria and the choice of Lyapunov function for the analysis of second order switching systems,” Proceedings. of the American Control Conference, Anchorage, AK, May, pp. 1248-1253, 2002. [12] H. Ye, A. Michel and L. Hou, “Stability theory for hybrid dynamical systems,” IEEE Trans. on Automatic Control, Vol. 43, pp. 461-474, 1999. [13] Z. Li, C. B. Soh and X. Xu, “Lyapunov stability of a class of hybrid dynamic systems,” Automatica, Vol. 36, pp. 297-302, 2000. [14] B. Hu, G. Zhai and A. N. Michel, “Common quadratic Lyapunov-like function with associated switching regions for two unstable second-order LTI systems,” In Proc. 39th Conf. Decision and Control, Svdnev. Australia, Dec. pp. 1391-1396, 2000. [15] Z. G. Li, C. Y. Wen and Y. C. Soh, “Stabilization of a class of switched systems via designing switching laws,” IEEE Trans. on Automatic Control, Vol. 46, pp. 665-670, 2001. [16] X. Xu and P. J. Antsaklis, “Stabilization of second-order LTI switched systems,” Int. J. Control, Vol. 73, pp. 1261-1279, 2000. [17] Kai Wulff, R. Shorten and P. Curran, “On the -region and the uniform asymptotic stability of classes of second order parameter-varying and switched systems,” Int. J. Control, Vol. 75, pp. 812-823, 2002. [18] X. D. Koutsoukos and P. J. Antsaklis, “Design of stabilizing switching control laws for discrete- and continuous-time linear systems using piecewise-linear Lyapunov functions,” Int. J. Control, Vol. 75, pp. 932-945, 2002. [19] B. Hu, G. Zhai and A. N. Michel, “Common quadratic Lyapunov-like functions with associated switching regions for two unstable second0order LTI systems,” Int. J. Control, Vol. 75, pp. 1127-1135,2002. [20] H. Ishii, T. Basar and R. Tempo, “Randomized algorithms for synthesis of switching rules for multimodal systems,” IEEE Trans. on Automatic Control, Vol. 50, pp. 754-767, 2001. [21] M. Akar and K. S. Narendra, “On the existense of a common quadratic Lyapunov function for two stable second order LTI discrete-time systems,” Proceedings. of the American Control Conference, Arlington, VA, June, pp. 2572-2577, 2001. [22] J. Daafouz, P. Riendinger and C. Iung, “Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach,” IEEE Trans. on Automatic Control, Vol. 47, pp. 1883-1887, 2002. [23] S. H. Lee, T. H. Kim and J. T. Lim, “Anew stability analysis of switched systems,” Automatica, Vol. 36, pp. 917-922, 2000. [24] J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time,” In Proc. 38th Conf. Decision and Control, Phoenix, Arizona, USA, Dec. pp. 2655-26690, 1999. [25] G. Zhai, B. Hu, K. Yasuda and A. N. Michel, “Stability analysis of switched systems with stable and unstable subsystems: An average swell time approach,” Proceedings. of the American Control Conference, Chicago, lllinois, June, pp. 200-204, 2000. [26] G. zhai, B. Hu, K. Yasuda and A. N. Michel, “Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach,” Int. J. Systems Science, Vol. 32, pp, 1055-1061, 2001. [27] Z. G. Li, B. Hu, C. Y. wen, Y. C. Soh and A. N. Michel, “A stable transformation for switched linear systems,” Proceedings. of the American Control Conference, Arlington, VA, June, pp. 331-336, 2001. [28] W. J. Wang and L. G. Man, “Stabilization and estimation for perturbed discrete time-delay large-scale systems,” IEEE Trans. on Automatic Control, Vol. 42, pp. 1277-1282, 1997. [29] P. L. Liu and T. J. Su, “Robust stability for uncertain large-scale time-delay systems with delay dependence,” Proceedings of the 32nd IEEE conference on Decision and Control, pp. 15-17, 1993. [30] B. Xu, “On delay-independendent stability of large-scale systems with time delays,” IEEE Trans. on Automatic Control, Vol. 40, pp. 930-933, 1995. [31] C. H. Chou and C. C. Cheng, “A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems,” IEEE Trans. on Automatic Control, Vol. 48, pp. 1213-1217, 2003. [32] H. Wu, “Decentralized adaptive robust control for a class of large-scale systems including delayed state perturbations in the interconnections,” IEEE Trans. on Automatic Control, Vol. 47, pp. 1745-1751, 2002. [33] Z. H. Guan, Y. Q. Liu and X. C. Wen, “Decentralized stabilization of singular and time-delay large-scale control systems with impulsive solutions,” IEEE Trans. on Automatic Control, Vol. 40, pp. 1437-1441, 1995. [34] J. T. Tsay, P. L. Liu and T. J. Su, “Robust stability for perturbed large-scale time-delay systems,” IEE Proceedings-Control Theory and Applications, Vol. 143, pp. 233-236, 1996. [35] M. A. Wicks, P. Peleties and R. A. DeCarlo, “Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems,” Eur. J. Control, 4(2), pp. 140-147, 1988 [36] Zhou, K. and Khargonekar, P. P., Robust stabilization of linear systems with norm-bounded time-varying uncertainty. System Control Lett., 10, 17-20, 1988. [37] S. D. Brierley, J. N. Chiasson, E. B. Lee and S. H. Zak, “On stability independent of delay for linear systems,” IEEE Trans. Automat. Control, 27, pp. 252-254, 1982. [38] P. Lancaster, Theory of Matrices, Academic Press, New York, 1969. [39] V. B. Kolmanovskii and V. R. Nosov, Stability of Function Differential Equation, Academic Press, London, 1986.
|