(34.201.11.222) 您好!臺灣時間:2021/02/25 04:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:石能佶
研究生(外文):Neng Chi Shih
論文名稱:有機發光二極體之披覆層與封裝製程之研究
論文名稱(外文):Study of the passivation layer and the encapsulating process of organic light emitting diodes
指導教授:陳文瑞陳文瑞引用關係
指導教授(外文):Wen Ray Chen
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:90
中文關鍵詞:披覆層封裝製程有機發光二極體
外文關鍵詞:passivation layerencapsulating processorganic light emitting diodes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
最近幾年來有機電致發光元件由於其具有低成本、結構簡單、無視角及低耗電量等優點而被廣的研究,更被譽為下一世代的顯示器主流,而且極有可能會取代目前顯示器的主流TFT-LCD,但是由於其本身的有機材料對於水氧極其敏感,元件生命期過短為目前最主要需要突破的問題之ㄧ。為了能有效遏止有機電致發光元件衰退,已經有多項研究積極進行,其中的一項就是於元件整體上沉積一層具高抗水、氧氣滲透的薄膜以阻隔其對元件的損害。由於矽的活性很高,因此在具有良好阻的薄膜以阻隔其對元件的損害為非常關鍵的技術。由於矽的活性很高,因此在具有良好阻障性且高透光率的氧化矽膜或氮化矽膜中,可將滲透進阻障薄膜的水、氧氣捉住,達到更好的阻障特性.
本次實驗中,我們著重於保護層的選擇和研究其特性,對於保護層薄膜做膜厚量測確定其沉積厚度,量測薄膜的穿透率,並且針對薄膜做透濕性和密度的量測,以便選出對於OLED元件最好的保護層,然後應用到元件上。最後再加上玻璃封蓋和吸濕材料氧化鋇完成元件的封裝。把有鍍不同保護層的元件,和沒有做封裝保護的元件做比較,再放入恆溫恆濕櫃中,作壽命量測。分別以電壓對電流、電壓對亮度、時間對亮度、陰極表面形態和暗點的產生做研究探討。從實驗所得結果可以發現保護層對於OLED元件的影響很大,確實能夠使元件的壽命延長。
Abstract
The Organic Light Emitting Diode (OLED) was extensively studied due to its superior properties of low cost, simple structure, wide viewing angles and low power consumption etc. It has been praised as the mainstream of displays for next generation. The TFT-LCD will replace by the OLED display in the feature. However, the organic was sensitive to oxygen and moisture. So the short lifetime was the main problem that needs to solve. The SiOx or SiNx layer is used as a barrier layer for trapping the oxygen and water vapor permeated through SiOx or SiNx layer.
In this study, we deposited different kinds of the passivation layer. To measure their thickness, light-transported, density and water permeation. The film was applied on the OLED device, then encapsulation by using the glass cap and hygroscopic agent. The encapsulated OLED device compared the characters with the non-encapsulated OLED device, and measured their lifetime in the stable temperature and humidity. We discussed the relationship of voltage-current, voltage-luminance, time-luminance, cathode morphology and dark spots. The result of the experiment has showed that the lifetime of the OLED device could be increased via effective encapsulation.
Content
Abstract (in Chinese)………………………………………………………iv
Abstract (in English)……………………………………………………...v
acknowledgement……………………………………………………………….vi
Figure and Table captions…………………………………………………ix
Chapter 1 Introduction………………………………………………………3
1-1 The develop of organic emitting-light diode…….…………5
1-2 The purpose of this study……………………………………………6
Chapter 2 Principle of basis……………………………...........9
2.1 Theory of Fluorescence and Phosphorescence…………………9
2.2 The principle of Electroluminescence…………………………10
2.3 The organic material…………………………………………………12
2.4 The degradation mechanism of OLEDs……………………………14
Chapter 3 Experimental Procedures and Systems.……………….20
3-1 Experimental equipment...………………………………………..20
3-1-1 The light-transport of the substrate measure…………20
3-1-2 The sheet resistance of the substrate measure………20
3-1-3 The thickness of the deposited film measure………….21
3-2 Experimental preparation …….…………………………………21
3-2-1 Substrate Cleaning ………………………………………………21
3-2-2 Substrate etching process………………………………………22
3-3 Growth system and procedures…………………………………….23
3-3-1 Deposition system .…….…….….………………………………23
3-3-2 Deposition of thin films ………………………………………23
3-3-3 Deposition of electrodes……………………………………….24
3-4 Encapsulation procedure……………………………………………25
3-4-1 RF magnetron sputtering system………………………………25
3-4-2 Evaporating of passivation layer………………………....26
3-4-3 Encapsulation procedure………………………………………..27
3-5 Measurements……………………………………………………………27
3-5-1 Electrical characteristics........................27
3-5-2 Optical characteristics……………………………………...28
3-5-3 Surface morphology……………………………………………..28
Chapter 4 Results and discussion…………………………………..32
Chapter 5 Conclusions…………………………………………………….43
Reference………………………………………………………….……………46

Figure Captions
Chapter 2
Fig. 2-1 The OLED structure………………………………………………51
Fig. 2.2 The HTL materials which we often used were TPD and NPB……………………..........................................52
Fig. 2.3 The EL materials which we often used was Alq3………53
Chapter 3
Fig. 3.1 The marshal OLED system was used for the process of the film……………….............................................54
Fig. 3.2 The measurement of four point probe………………………55
Fig. 3.3. The schematically structural diagram of α-step……56
Fig. 3.4. The process of the OLED device……………………………57
Fig. 3.5. The diagram of CIE measured…………………………………58
Chapter 4
Fig. 4.1. I-V characteristics of OLEDs passivated by difference passivation layer…..…......................................59
Fig. 4.2. Luminance-voltage curves of OLEDs passivated by difference passivation layer………………………………………………………….……60
Fig. 4.3. Luminance-Power plots of OLEDs passivated by difference passivation layer.. ........................................61
Fig. 4.4. Efficiency-voltage curves of OLEDs passivated by difference passivation layer.................................62
Fig. 4.5. The lifetime of OLEDs passivated by difference passivation layer at the condition
(25 ℃, 40% RH)...............................................63
Fig. 4.6. I-V characteristics of OLEDs passivated by various thickness SiO2 layers…….....................................64
Fig. 4.7. Luminance-voltage curves of OLEDs passivated by various thickness SiO2 layers………………………………………………………....65
Fig. 4.8. Luminance-Power plots of OLEDs passivated by various thickness SiO2 layers.........................................66
Fig. 4.9. Efficiency-voltage curves of OLEDs passivated by various thickness SiO2 layers…………………………………………………...………67
Fig. 4.10. The lifetime of OLEDs passivated by various thickness SiO2 layers at the condition (25℃, 40% RH)…………………………….68
Fig. 4.11. I-V characteristics of OLEDs with and without the glass cap……..……………..............................................69
Fig. 4.12. Luminance-voltage curves of OLEDs with and without the glass cap…………...............................................70
Fig. 4.13. Luminance-Power plots of OLEDs with and without the glass cap……..…..….................................................71
Fig. 4.14. Efficiency-voltage curves of OLEDs with and without the glass cap……….…..............................................72
Fig. 4.15. The lifetime of OLEDs with and without the glass cap at the condition (25 ℃, 40% RH)…………….…………………….…………….73
Fig. 4.16. I-V characteristics of OLEDs passivated by difference passivation layer……….........................................74
Fig. 4.17.Luminance-voltage curves of OLEDs passivated by difference passivation layer..............................................75
Fig. 4.18.Luminance-Power plots of OLEDs passivated by difference passivation layer………......………………………………………………...76
Fig. 4.19.Efficiency-voltage curves of OLEDs passivated by difference passivation layer…………………...……………………………77
Fig. 4.20.The lifetime of OLEDs passivated by difference passivation layer at the condition(25 ℃, 40% RH)………………….…………………78
Fig. 4.21. I-V characteristics of OLEDs passivated by difference metal layer…..................................................79
Fig. 4.22. Luminance-voltage curves of OLEDs passivated by difference metal layer.........................................80
Fig. 4.23. Luminance-Power plots of OLEDs passivated by difference metal layer………...............................................81
Fig. 4.24. Efficiency-voltage curves of OLEDs passivated by difference metal layer…..…....................................82
Fig. 4.25. The lifetime of OLEDs passivated by difference metal layer at the condition(25 ℃, 40% RH)…….......................83
Fig. 4.26. I-V characteristics of OLEDs passivated by stacked passivation layer………….......................................84
Fig. 4.27. Luminance-voltage curves of OLEDs passivated by stacked passivation layer..............................................85
Fig. 4.28. Luminance-Power plots of OLEDs passivated by stacked passivation layer...…..........................................86
Fig. 4.29. Efficiency-voltage curves of OLEDs passivated by stacked passivation layer….............................................87
Fig. 4.30. The lifetime of OLEDs passivated by stacked passivation layer at the condition(25 ℃, 40% RH)……………………………………...88
Fig. 4.31. (a) Optical image without applied bias shows some bright points. (b) Electroluminescence image shows some dark spots around the bright points………………..............................89
Fig. 4.32. The radiated picture of the OLED device…………………….90
Reference
[1]Jay S. Lewis, and Michael S.Weaver, “Thin-Film Permeation Technology for Flexible Organic Light-Emitting Devices”, IEEE, vol.10, no.1, 2004, pp.45

[2]Akira Sugimoto, Hideo Ochi, Soh Fujimura, Ayako Yoshida, Toshiyuki Miyadera, and Masami Tsuchida, “Flexible OLED Displays Using Plastic Substrates”, IEEE, vol.10, no.1, 2004, pp.107

[3]Sun Woong Kim, Byong Hoon Hwang, Joo Hyeon Lee, Jae Il Kang, Kyoung Wook Min, and Woo Young Kim, “2.4-in monochrome small molecular OLED display for mobile application”, Current Applied Physics, vol.2, 2002, pp.335-338.

[4]J. LAubender, L. Chkoda, M. Sokolowski, and E. Umbach, “The influence of oxygen and air on the characteristics of organic light-emitting devices studied by in vacuo measurements”, Synthetic Metals, vol.111-112, 2000, pp.373-376.

[5]Dechun Zou, Masayuki Yahiro, and Tetsuo Tsutsui, “Study on degradation mechanism of organic light-emitting diodes(OLEDs)”, Synthetic Metals, vol.91, 1997, pp.191-193.

[6]Zoran D. Popovic, Hany Aziz, Andronique Ioannidis, Nan-Xing Hu, and Paulo N. M. dos Anjos, “Time-resolved fluorescence studies of degradation in tris(8-hydroxyquinoline) aluminum (AlQ3)-based Organic light emitting devices (OLEDs)”, Synthetic Metals, vol.123, 2001, pp.171-181.

[7]Yoon-Fei Liew, Furong Zhu, and Soo-Jin Chua, “Effect of organic combination on dark spot formation in organic light emitting devices”, Chemical Physics Letters, vol.394, 2004, pp.275-279.

[8]Gao Liu, John B. Kerr, and Steve Johnsonm, “Dark spot formation relative to ITO surface roughness for polyfluorene devices”, Synthetic Metals, vol.144, 2004, pp.1-6.

[9]M. Y. Chen, S. L. Lai, F. L. Wong, O. Lengyel, C. S. Lee, and S. T. Lee, “Efficiency enhancement and retarded dark-spots growth of organic light-emitting devices by high-temperature processibg”, Chemical Physics Letters, vol.371, 2003, pp.700-706.

[10]Shuang Fang Lim, Wei Wang, and Soo Jin Chua, “Degradation of organic light-emitting devices due to formation and growth of dark spots”, Materials Science and Engineering, vol.B85, 2001, pp.154-159.

[11]Gi Heon Kim, Jiyoung Oh, Yong Suk Yang, Lee-Mi Do, and Kyung Soo Suh, “Encapsulation of organic light-emitting devices by means of photopolymerized polyacrylate films”, Polymer, vol.45, 2004, pp.1879-1883.

[12]Gi Heon Kim, Jiyoung Oh, Yong Suk Yang, Lee-Mi Do and Kyung Soo Suh, “Lamination process encapsulation for longevity of plastic-based organic light-emitting devices”, Thin Solid Films, vol.467, 2004, pp.1-3.

[13]Y. S. Jeong, B. Ratier, A. Moliton and L.Guyard, “UV-visible and infrared characterization of poly(p-xylylene) films for waveguide applications and OLED encapsulation”, Synthetic Metals, vol.127, 2002, pp.189-193.

[14]Soon Moon Jeong, Won Hoi Koo, Sang Hun Choi, Sung Jin Jo, Hong Koo Baik, Se-Jong Lee and Kie Moon Song, “Charge injection and transport model in Organic light-emitting diodes with aluminum cathodes prepared by ion beam assisted deposition”, Solid- State Electronics, vol.49, 2005, pp.205-212.

[15]Soon Moon Jeong, Won Hoi Koo, Sang Hun Choi, Sung Jin Jo, Hong Koo Baik and Se-Jong Lee, “Passivation properties of OLEDs with aluminum cathodes prepared by ion-beam-assisted deposition process”, Applied Surface Science, vol.241, 2005, pp.352-361.

[16]Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung and S. S. Lau, “An efficient organic light-emitting diode with Silver Electrodes”, Chemical Physics Letters, vol.386, 2004, pp.128-131.

[17]Rudi Ono, Michael Kiy, Ivan Biaggio and Peter Gunter, “Impurity-gas-dependent charge injection properties at the electrode-organic interface in organic light-emitting diodes”, Materials Science and Engineering, vol.B85, 2001, pp.144-148.


[18]Iwao Sugimoto, Hiroki Kuwano and Satoko Nakano, “Effects of heavy plasma atoms on spin centers in reactively sputtered SiN films”, Thin Solid Films, vol.278, 1996, pp.61-66.

[19]Jianming Wen, Xiao Ying, King Wong, Gunter Barth and GaLane Chen, “Tribological characteristics of SiNx films”, IEEE, vol. 35, no. 5, 1999, pp2358-2360.

[20]D. S. Wuu, W. C. Lo, L. S. Chang and R. H. Horng, “Properties of SiO2-like barrier layers on polyethersulfone substrates by low-temperature plasma-enhanced chemical vapor deposition”, Thin Solid Films, vol.486, 2004, pp.105-108.


[21]Jun-Ho Yum and Yung-Eun Sung, “Full Color Screen by EPD Combined with Photolithography for Flat Panel Displays”, J. Electrochem. Soc, vol.151,2004, H27.

[22]Hyun Sook Bae, Woo Joon Chung, and Ki-Woong Whang, “Effect of barrier rib height variation on the luminous characteristics of ac plasma display panel”, J. Appl. Phys, vol.95, 2004, pp30.

[23]Sung-O Kim, “Protective layer using plasma polymerized thin films in ac-plasma display panel”, J. Vac. Sci. Technol, vol.B 21, 2003, pp.233.

[24]Yongtaek Hong, Jeong-Yeop Nahm, and Jerzy Kanicki,“Optoelectrical properties of four amorphous silicon thin-film transistors 200 dpi active-matrix organic polymer light-emitting display”, Appl. Phys. Lett, vol.83, 2003, pp.3233.

[25]Paul H. Holloway et al., “Near-infrared display materials”, Proc. SPIE Int. Soc. Opt. Eng, vol.5080, 2003, pp.340.

[26]Paul A. Boynton, Edward F. Kelley, and John M. Libert, “Current projects in display metrology at the NIST flat panel display laboratory”, Proc. SPIE Int. Soc. Opt. Eng, vol.4826, 2003, pp.165.

[27]Shunsuke Kobayashi, Jun Xu, Hirokazu Furuta, Yuji Murakami, Satoru Kawamoto, Masafumi Oh-kouchi, Hiroshi Hasebe, and Haruyoshi Takatsu, “Fabrication and electro-optic characteristics of polymer-stabilized V-mode ferroelectric liquid crystal display and intrinsic H-V-mode ferroelectric liquid crystal displays: their application to field sequential fullcolor active matrix liquid crystal displays”, Opt. Eng, vol.43, 2004, pp.290.

[28]Toshiyuki Horiuchi and Hiroshi Kobayashi, “Improvement of the Liquid-Crystal-Display Matrix Exposure Using an Aperture Plate for Reshaping Cell Windows”, Jpn. J. Appl. Phys, Part 1 vol.43, 2004, pp.394.

[29]Seung-Joon Lee, Jae-Kyung Lee, Eu-Seok Kang, Tae-Won Kim, and Ho-Jung Hwang, “Improvement of luminance and luminous efficiency for optimal Penning gas mixtures in alternating current plasma display panels”, Vac. Sci. Technol, vol.A 21, 2003, pp.1237.

[30]Jun Hee Choi et al., “Carbon nanotube field emitter arrays having an electron beam focusing structure”, Appl. Phys. Lett, vol.84, 2004, pp.1022.

[31]Hany Aziz, “Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light emitting devices”, Appl. Phys. Lett , vol.72, 1998, pp.756

[32]A. B. Walker, A. Kambili, S. J. Martin, “Electrical transport modeling in organic electroluminescent devices”, J. phys. Condens. Matter, vol.14, 2002, pp.9825

[33]C. W. Ko and Y. T. Tao, “Bright white organic light-emitting diode”, Appl. Phys. Lett, vol.79, 2001, pp.4234.

[34]Frank Steuber, Jörg Staudigel, Matthias Stössel, Jürgen Simmerer, Albrecht Winnacker, Hubert Spreitzer, Frank Weissörtel, and Josef Salbeck, “White light emission from organic LEDs utilizing spiro compounds with high-temperature stability”, Advanced Materials, vol.12, 2000, pp.130.

[35]R. S. Deshpande, V. Bulovic´, and S. R. Forrest, “White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer”, Appl. Phys. Lett, vol.75, 1999, pp.888.
[36]W. Brutting, S. Berleb, A. G. Muckl, “Device physics of organic light-emitting diodes based on molecular materials”, Organic Electronics, vol.2, 2001, pp.1

[37]J. Thompson, R. I. R. Blyth, M. Mazzeo, M. Anni, G. Gigli, and R. Cingolani, “White light emission from blends of blue-emitting organic molecules:A general route to the white organic light-emitting diodes”, Appl. Phys. Lett, vol. 79, 2001, pp.560.

[38]I-Min Chan, Weng-Cheng Cheng, and Franklin C. Hong, “Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surfaces” Appl. Phys. Lett, vol.80, 2002, pp.13.

[39]Shigekazu Tada, Masafumi Ito, Manabu Hamagaki, Masaru Hori, and Toshio Goto, “ Cleaning of Glass Disk in Oxygen Plasma by Using Compact Electron-Beam-Excited Plasma Source” Jpn. J. Appl. Phys, Part 1, vol.41, 2002, pp.6553.

[40]Yuichi Hashimoto, Yoichi Osato, Masato Tanaka, Manabu Hamagaki, and Takeshi Sakakibara, “Effect of Oxygen Plasma Treatment of Indium Tin Oxide for Organic Light-Emitting Devices with Iodogallium Phthalocyanine Layer” Jpn. J. Appl. Phys, Part 1, vol.41, 2002, pp.2249.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔