(34.237.52.11) 您好!臺灣時間:2021/05/18 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳健生
研究生(外文):Chien-Sheng Chen
論文名稱:團體式密碼系統之研究
論文名稱(外文):The Study of Group-Oriented Cryptosystem
指導教授:林祝興林祝興引用關係周志賢
指導教授(外文):Chu-Hsing LinJue-Sam Chou
學位類別:碩士
校院名稱:東海大學
系所名稱:資訊工程與科學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:35
中文關鍵詞:團體導向秘密分享多重簽章橢圓曲線單向赫序函數
外文關鍵詞:Group-Orientedsecret sharingaccess structuremultisignatureelliptic curveone-way hash function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
隨著團隊工作變得越來越受企業所重視,要如何防止團體的秘密被盜用也變得更加重要了。而團體式的密碼系統正適合用來幫助這樣的一群人建立一個安全的環境,以便處理他們之間的秘密資訊。但是網路的發達使得攻擊者比以往更加容易地欺騙這些團體。這是因為利用網路犯罪的特性就是快速、無遠弗屆、難以察覺等等。因此一個團體式的密碼系統必須能抵抗各式各樣的攻擊,比如偽造資訊、重送訊息、假冒合法與用者等等。而且系統的效能也是非常重要的,因為對人們來說,「時間就是金錢。」

在本文裡,我們要提出兩種基於團體式密碼系統觀念的方法:第一種是團體秘密分享的方法,它讓每個人所擁有的祕鑰不用一再改變,但是每次為了重組團體密鑰所拿出的秘密卻都不同,並且改善了前人的方法在效能上的問題。第二種則是直基於橢圓曲線密碼系統上的多重簽章方法,它不但克服了在Zhang 與Xiao 的方法裡個弱點,也在效能上面作了大幅度的改善。
As the team-work becomes more and more important, to prevent the group secret from stolen also becomes more serious. Group-Oriented Cryptosystem helps these groups to withstand their secret messages in a secure environment. However, the net makes the attacker to cheat these groups becoming easier. It is because that to commit a crime by the net is quick, long distance, and hard to be conscious. So Group-Oriented Cryptosystem must prevent every kind of attacks such as forging message, replaying message, impersonating legal users, and so on. Furthermore, the performance of a group-oriented cryptosystem is also important, because that people say: “Time is money.”

In this paper, we have two group-oriented cryptosystems. First, we propose a secret sharing scheme to solve the problem of using a group key in access structures. It improves the efficiency problem in previous schemes. Then we proposed a multisignature scheme based on Elliptic Curve Cryptography to deal with the group signature. It not only revises the weakness in Zhang-Xiao’s scheme, but also improves its efficiency.
Abstract……………………………………………………………………………1
Chapter 1
Introduction………………………………………………………3
Chapter 2
Background…………………………………………………………4
2.1 Basic Cryptography …………………………………………………………4
2.1.1 One-Way Hash Function 4
2.1.2 Elliptic Curve Cryptography 4
2.1.3 Elliptic Curve Digital Signature Algorithm 5
2.2 Related Techniques 6
2.2.1Secret Sharing Scheme 6
2.2.2Multisignature Scheme 9
Chapter 3 Review of Chang’s Secret Sharing Scheme and Zhang-Xiao’s
Multisignature Scheme………………………….……………………11
3.1 Chang’s Secret Sharing Scheme…………...………………………………11
3.2 Zhang-Xiao’s Multisignature Scheme…………………………………….13
3.3 The Weakness of Zhang-Xiao’s Multisignature Scheme………...………15
Chapter 4 Our Proposed Secret Sharing Scheme…………………………...…18
4.1 Dynamic Key generations for Secret Sharing in Access Structures……..18
4.2 Security Analysis of Our Proposed Secret Sharing Scheme…………….19
4.3 Performance of Our Proposed Secret Sharing Scheme……………….20
Chapter 5 Our Proposed Multisignature Scheme……………………………22
5.1 Improvement of New Multisignature Scheme for Specified Group of
Verifiers………….…………………………………………………………22
5.2 Security Analysis of Our Proposed Multisignature Scheme 27
5.3 Performance of Our Proposed Multisignature Scheme 29
Chapter 6 Conclusion…………………………………………………………….32
Reference …………………………………………………………………………33
References
[1]A. Shamir. “How to Share a Secret,” Communications of the ACM, Nov 1979, 22(11):pp. 612-613.
[2]B. Blakley, G.R. Blakley, A.H. Chan, and J.L. Massey, “Threshold Schemes with Disenrollment,” Abstracts of CRYPTO’92, Aug 1992.
[3]C. C. Chang, C. H. Lin, W. Lee, and P. C. Hwang, “Secret Sharing with Access Structures in a Hierarchy,” International Conference on Advanced Information Networking and Applications (AINA), Fukuoka, Japan, March 2004, Vol. 2, pp. 31-34.
[4]B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, New York, Wiley, 1994, pp.59-61.
[5]D. R. Stinson, Cryptography: Theory and Practice, Boca Raton: CRC Press, c1995.
[6]K. Itakara and K. Nakamura, “A Public Key Cryptosystem Suitable for Digital Multisignatures,” NEC Res. Dev. 71 1983, pp. 1-8.
[7]L. Harn and T. Kiesler, “New Scheme for Digital Multisignature,” IEEE Electron. Lett. Vol. 25 (15), 1989, pp. 1002-1003.
[8]K. Ohta and T. Okamoto, “A Digital Multisignature Scheme Based on The Fiat-Shamir Scheme,” ASIACRYPT’91, 1991, pp. 139-148.
[9]T. Wu and S. Chou, “Two ID-based Multisignature Protocols for Sequential and Broadcasting Architecture,” Comput. Commun. Vol. 19 (10), 1996, pp. 851-856.
[10]L. Harn, “Digital Multisignature with Distinguished Signing Authorities,” IEE Electron. Lett. Vol. 35 (4), 1999, pp. 294-295.
[11]Z. Zhang and G. Xiao, “New Multisignature Scheme for Specified Group of Verifiers,” Applied Mathematics and Computation Vol. 157, 2004, pp. 425-431.
[12]L. Harn, “New Digital Signature Scheme Based on Discrete Logarithm,” IEE Electron. Lett. Vol. 30 (5), 1994, pp. 396-398.
[13]T. ElGamal, “A Public-key Cryptosystem and A Signature Scheme Based on Discrete Logarithms,” IEEE Trans. Inform. Theory Vol. 31 (4), 1985, pp. 469-472.
[14]W. H. He, “Weakness in Some Multisignature Schemes for Specified Group of Verifiers,” Inform. Process. Lett. Vol. 83, 2002, pp. 95-99.
[15]D.R. Stinson, Cryptography: Theory and Practice, Second Edition, Chapman & Hall/CRC, New York, 2002.
[16]Y. Zheng and H. Imai, “How to Construct Efficient Signcryption Schemes on Elliptic Curves,” Information Processing Letters Vol. 68 (5), December 5. 1998, pp. 227-233.
[17]Z. Shao, “Improvement of Digital Signature With Message Recovery and Its Variants Based on Elliptic Curve Discrete Logarithm Problem,” Computer Standards and Interfaces Vol. 27 (1), November, 2004, pp. 61-69.
[18]C. Charnes, J. pieprzyk, and R. Safavi-Naini, “Conditionally Secure Secret Sharing Schemes with Disenrollment Capability,” Proceedings of the 2nd ACM Conference on Computer and Communication Security, Fairfax, Virginia, Nov 1994, pp. 89-95.
[19]H. Y. Lin, L. Harn, “A Generalized Secret Sharing Scheme with Cheater Detection,” Proceedings of ASIACRYPTO ’91, Springer-Verlag, Nov 1991, pp. 149-158.
[20]Draft FIPS 180-2, Secure Hash Standards (SHS), U.S. Doc/NIST, May 30, 2001.
[21]Crypto++™ Library 5.1 from http://www.eskimo.com/~weidai/cryptlib.html.
[22]N. Koblitz, A. Menezes, and S. Vanstone, “The State of Elliptic Curve Cryptography,” Design, Codes and Cryptography, 19, 2000, pp. 173-193.
[23]N. Koblits, “Elliptic Curve Cryptosystems,” Mathematics of Computation, 48, 1987, pp. 203-209.
[24]V. Miller, “Uses of Elliptic Curves in Cryptography,” Advances in Cryptology – Crypto’85, Proceedings, Lecture Notes in Compute Science, No. 218, Springer-Verlag, New York, 1985, pp. 417-426.
[25]T. S. Chen, “A threshold signature scheme based on the elliptic curve cryptosystem,” Applied Mathematics and Computation Vol. 162, (3), March 25, 2005, pp. 1119-1134.
[26]M. S. Hwang, S. F. Tzeng, and C. S. Tsai, “Generalization of proxy signature based on elliptic curves,” Computer Standards and Interfaces Vol. 26 (2), March, 2004, pp. 73-84.
[27]H. M. Sun, B. T. Hsieh, and M. S. Tseng, “On the security of some proxy blind signature schemes,” Journal of Systems and Software Vol. 74 (3), February 1, 2005, pp. 297-302.
[28]Y. Desmedt, “Society and Group Oriented Cryptography: A New Concept,” In Advances in Cryptology, Proc. Of Crypto ’87, Springer Verlag, Berlin, 1988, pp. 120-127.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top