跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 15:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀偉龍
研究生(外文):Wei-Lung Chi
論文名稱:應用二維小波轉換檢測晶圓晶粒之可見瑕疵
論文名稱(外文):Inspecting Visual Defects of Wafer Die by Using Two-Dimensional Wavelet Transform
指導教授:葉繼豪葉繼豪引用關係
口試委員:馬恆田方治
口試日期:2005-05-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:118
中文關鍵詞:機器視覺晶圓晶粒可見瑕疵墨點二維小波轉換最適橢圓法
外文關鍵詞:Machine visionWafer dieVisual defectsDot2-D Wavelet TransformBest Fitting Ellipse
相關次數:
  • 被引用被引用:2
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本論文係利用機器視覺(Machine Vision)與二維小波轉換(Two-Dimensional Wavelet Transform;2-D WT)檢測晶圓之表面可見瑕疵,如:刮痕、微粒、污染及墨點,本論文以晶圓之1/20晶粒次區域影像為待測影像,先將晶粒次區域影像經平滑化與Sobel邊緣化處理後,再經由二維小波轉換的多解析分解可計算出二維小波群聚能量(Wavelet Transform Modulus Sum;WTMS)與小波能量群聚比值(α)。由於晶粒表面可見瑕疵及墨點之邊緣像素點在某相鄰階層間之小波能量群聚比值與正常影像差異甚多,故藉此可判定刮痕、微粒、污染或墨點之瑕疵像素點位置,再進一步利用最適橢圓法(Best Fitting Ellipse)求出這些瑕疵素點群之幾何特徵以分類微粒及污染、刮痕與墨點。實驗結果顯示,本論文所提出之晶圓瑕疵檢測方法在特定小波基底與多解析分解之特定階數下,能有效且精確偵測出表面可見瑕疵(微粒及污染、刮痕)及墨點之瑕疵像素點位置,後續之最適橢圓法計算得出的幾何特徵(長短軸比值與面積值)亦可初步區隔微粒及污染、刮痕與墨點。本研究提出之方法使得一待測完整晶粒影像僅需比對約20000個像素點即可,故可提昇檢測速度與節省儲存空間,期能協助目前人工檢測瓶頸與自動化光學檢測設備高成本之問題。
This paper develops an automatic optical inspection (AOI) system to inspect the visual defects such as particle, contamination, and scratch and dot on wafer die by using two-dimensional wavelet transform (2-D WT) and machine vision. The potential pixels for visual defects and dot can be precisely captured by the wavelet transform modulus sum (WTMS) and across-level ratio (α) on adjacent decomposition levels. Once the potential pixels are addressed, best fitting ellipse algorithms are utilized for calculating the geometric features such as the length of major axis, the length of minor axis, and area to classify particle and contamination, scratch, and dot on wafer die. Experiment results show that the proposed method is able to precisely capture visually defective and dot pixels on a wafer die. Moreover, it is initially feasible to classify pixel candidates into particle and contamination, scratch, or dot based on best fitting ellipse algorithms. Since the number of pixels requiring inspection on a die is around 20000 pixels, the inspection can be speed up and the capacity of this stage can be increased.
摘 要....................................................i
ABSTRACT................................................ii
誌 謝..................................................iii
目 錄...................................................iv
表目錄..................................................vi
圖目錄.................................................vii
第一章 緒論.............................................1
1.1 研究動機與背景.....................................1
1.2 研究目的...........................................4
1.3 研究範疇...........................................6
1.4 研究限制...........................................8
1.5 研究步驟流程與論文架構.............................9
第二章 文獻探討........................................11
2.1 現行晶圓檢測之方法................................11
2.1.1 晶圓針測製程................................11
2.1.2 IC封裝製程..................................12
2.1.3 IC封裝前晶圓瑕疵檢測........................13
2.1.4 IC封裝後晶圓瑕疵檢測........................16
2.2 表面瑕疵檢測之方法................................17
2.3 小波轉換(Wavelet Transforms)......................18
第三章 研究方法........................................21
3.1 前置影像處理法....................................21
3.1.1 影像平滑化(Smoothing)處理...................21
3.1.2 Sobel邊緣化處理.............................22
3.2 影像特徵擷取演算法................................24
3.2.1 二維小波轉換(2-D WT)........................24
3.2.2 二維小波群聚能量(WTMS)......................27
3.3 晶圓瑕疵檢測流程..................................29
3.3.1 應用二維小波轉換於晶圓瑕疵檢測..............29
3.3.2 晶圓瑕疵偵測程序............................31
3.3.3 晶粒瑕疵幾何特徵計算方法....................38
第四章 實驗結果與分析..................................41
4.1 實驗環境介紹......................................41
4.1.1 硬體設備與系統架構..........................41
4.1.2 軟體架構....................................46
4.2 實驗之樣本影像與前置影像處理結果..................47
4.2.1 實驗之樣本影像..............................47
4.2.2 前置影像處理之結果..........................50
4.3 實驗結果與分析....................................51
4.3.1 門檻值之決定................................52
4.3.2 實驗結果....................................57
4.3.3 現有方法之比較..............................66
第五章 結論與未來研究方向..............................69
5.1 研究成果..........................................69
5.2 未來研究方向......................................70
參考文獻................................................71
附錄A 實驗樣本..........................................78
附錄B 良好晶粒影像與其經二維小波轉換後之結果............85
附錄C 實驗結果..........................................93
附錄D 實驗偵測出不規則像素點集合之結果.................112
附錄E 最適橢圓資料表...................................117
[1]莊達仁,VLSI製造技術,高立,台灣,1999。
[2]趙中興,VLSI設計製造入門,全華,台灣,2003。
[3]彭茂榮,2003年我國IC產業回顧與展望,工研院經資中心ITIS計畫產業分析專欄,2004。
[4]林明獻、劉緒東、黃俊偉,淺談矽晶圓材料的製程技術,電子與材料第四期,第56-69頁。
[5]R. T. Chin and C. A. Harlow, “Automated visual inspection: a survey”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.4, No.6, 1982, pp.557-573.
[6]謝文樂,塑膠I.C.封裝製程,工業材料,Vol.117,1996。
[7]曾健維,晶片印字瑕疵檢測之研究,中原大學,工業工程學系碩士論文,1999。
[8]張育賢,利用影像區域特性於晶圓表面瑕疵自動化檢驗,國立清華大學,工業工程研究所碩士論文,1995。
[9]S. Rowley, S. Thorne, and A. Bousetta, C. Perry, and C. Dutton, “Comparative study of two KLA-Tencor advanced patterned wafer inspection systems”, Advanced Semiconductor Manufacturing Conference and Workshop, 2000 IEEE/SEMI, pp.141-145, 2000.
[10]S. Kubota, N. Eguchi, and H. Masuda, “DUV lasers applied to semiconductor inspection and optical disk mastering”, Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components, 2001 Digest of the LEOS Summer Topical Meetings, pp.2-6, 2001.
[11]T. Kubota, P. Talekar, T. S. Sudarshan, M. Xianyun, M. Parker, and M. Yuefei, “An automated defect detection system for silicon carbide wafers”, Southeast Conference 2002 Proceedings IEEE, pp.42-47, 2002.
[12]楊仁魁,晶粒表面缺陷的檢測系統,國立交通大學,資訊科學學系碩士論文,1994。
[13]許文輝,區間神經網路應用於半導體晶圓缺陷辨識及良率估計之設計,元智大學,工業工程研究所碩士論文,1998。
[14]陳嶸列,應用灰階值強度的方法於晶圓表面自動化檢驗,國立清華大學工業工程研究所碩士論文,1995。
[15]曾紀綱,應用機器視覺方法於晶圓表面瑕疵檢測之研究,元智大學工業工程與管理學系碩士論文,2003。
[16]S. H. Guan, P. Xie, and H. Li, “A golden-block-based self-refining scheme for repetitive patterned wafer inspections”, Machine Vision and Applications, Vol. 13, No. 5-6, pp.314-321, 2003.
[17]邱振洋,應用電腦視覺於IC瑕疵檢測之研究,國立雲林科技大學,工業工程與管理研究所碩士論文,1999。
[18]張明清,用快速定位演算法做晶片印碼品質檢測,國立台灣大學,資訊工程學系碩士論文,1997。
[19]H. H. Loh and M. S. Lu, “SMD inspection using structured light”, Industrial Automation and Control: Emerging Technologies 1995, International IEEE/IAS Conference on, pp.673 -677, 1995.
[20]徐智誠,應用電腦視覺於晶片內部接線之自動化檢驗,國立清華大學碩士論文,1995。
[21]C. A. Chang, H. D. Lin, and C. C. Lo, “Test of Pattern Change for Automated Detection of Printing Faults Using Computer Vision Systems”, International Journal of Industrial Engineering, pp.5-13, 1997.
[22]黃國唐,彩色紋路表面之瑕疵檢測,私立元智大學,工業工程與管理研究所碩士論文,1999。
[23]楊榮華,應用灰階共變異矩陣之多重指標於瑕疵檢測,私立元智大學,工業工程研究所碩士論文,2002。
[24]劉權霈,應用電腦視覺技術於PCB自動檢測系統之設計及開發,國立交通大學,工業工程與管理研究所碩士論文,2001。
[25]K. Maalmi, O. A. EL, R. Benslimane, F. C. Lew, V. Yan, A. Diou, and P. Gorria, “Crack defect detection and localization using genetic-based inverse voting Hough transform”, Pattern Recognition, 2002 Proceedings 16th International Conference on, Vol.3, pp.257-260, 2002.
[26]G. C. Gialcos, L. Fraiwan, N. Patnekar, S. Sumrain, J. Carletta, and F. Krach, “An optical polarimetric imaging system for surface defect detection of aircraft engines”, Instrumentation and Measurement Technology Conference, IMTC/2002, Proceedings of the 19th IEEE, Vol.2, pp.1701-1704, 2002.
[27]梁俊傑,DVD與VCD光碟表面瑕疵檢測系統之開發,國立屏東科技大學,機械工程系碩士論文,2002。
[28]W. Y. Wu, M. J. Wang, and C. M. Liu, “Automated inspection of printed circuit boards through machine vision”, Computer in Industry, Vol.28, No.2, pp.103-111, 1996.
[29]M. Mogant and F. Ercal, “Segmentation of printed circuit board images into basic Patterns”, Computer Vision and Image Understanding, Vol.70, No.1, pp.74-86, 1998.
[30]T. F. Cootes, G.J. Page, C. B. Jackson, and C. J. Taylor, “Statistical gray-level models for object location and identification”, Image and Vision Computing, Vol.14, No.8, pp.533-540, 1996.
[31]M. H. Tatibana and R. de A. Lotufo, “Novel Automatic PCB Inspection Technique Based on Connectivity”, Computer raphics and Image Processing Proceedings, X Brazilian Symposium on 1997, pp.187-194, 1997.
[32]M. J. Wang, W. Y. Wu, and C. C. Hsu, “Automated post bonding inspection by using machine vision techniques”, International Journal of Production Research, Vol.40, No.12, pp.2835-2848, 2002.
[33]H. K. Lee and S. I. Yoo, “A Method for Inspection of Ball Bonds in Integrated Circuits”, 1999 IEEE International Conference on Systems, Man and Cybernetics, Vol.2, pp.975-980, 1999.
[34]K. K. Sreenivasan, M. Srinath, and A. Khotanzad, “Automated vision system for inspection of IC pads and bonds”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol.16, No.3, pp.333-338, 1993.
[35]W. Y. Du and S. L. Dickerson, “Passive component inspection using machine vision”, International Conference on Multichip Modules and High Density Packaging, pp.74-79, 1998.
[36]C. H. Yeh, T. C. Shen, and F. C. Wu, “A Case Study: Passive Component Inspection Using 1-D Wavelet Transform”, International Journal of Advanced Manufacturing Technology, Vol.22, No.11-12, pp.899-910, 2003.
[37]C. H. Yeh, F. C. Tien, and F. C. Wu, “Boundary-based Passive Component Inspection Approach Using Eigenvalues of Covariance Matrices”, International Journal of Production Research, Vol.11, No.17, pp.4025-4042, 2003.
[38]T. C. Hsung, P. K. Lun, and W. C. Siu, “A deblocking technique for block-transform compressed image using wavelet transform modulus maxima”, IEEE Transactions on Image Processing, Vol.7, No.10, pp.1488-1496, 1998.
[39]B. B. Chai, J. Vass and, X. Zhuang, “Significance-linked connected component analysis for wavelet image coding”, IEEE Transactions on Image Processing, Vol.8, No.6, pp.774-784, 1999.
[40]T. C. Hsung, C. L. Chan, P. K. Lun, and D. Feng, “Embedded singularity detection zerotree wavelet coding”, International Conference on Image Processing Proceeding, Vol.2, pp.274-278, 1999.
[41]D. Wajcer, D. Stanhill, and Y. Y. Zeevi, “Two dimensional multiwavelets with vanishing moments for image coding”, Mediterranean Electiotechnical Conference, Vol.1, pp.72-76, 1998.
[42]S. D. Servetto, K. Ramchandran, and M. T. Orchard, “Image coding based on morphology representation of wavelet data”, IEEE Transactions on Image Processing, Vol.8, No.9, pp.1161-1174, 1999.
[43]A. Liew and D. T. Neuyen, “Uniqueness issue of wavelet transform modulus maxima epresentation and a least squares reconstruction algorithm”, Electron Letters, Vol.20, pp.1735-1736, 1995.
[44]J. T. Miller and C. C. Li, “Segmentation of object surfaces using the haar wavelet at multiple resolutions”, Image Processing, Vol.3, pp.475-477, 1994.
[45]T. C. Hsung, P. K. Lun, and W. C. Siu, “Denoising by singularity detection”, IEEE Transactions on Signal Processing, Vol.47, No.11, pp.3139-3144, 1999.
[46]T. C. Hsung and P. K. Lun, “Image denosing using wavelet transform modulus sum”, Fourth International Conference on Signal Processing, Vol.2, pp.1113-1116, 1998.
[47]A. L. Amet and A. Ercil, “Texture Defect Detection using domain co-occurrence matrices”, Image Analysis and Interpretation, 1998 IEEE Southwest Symposium, pp.205-210, 1998.
[48]S. G. Mallat, “A Theory for Multiresolution Signal Decomposition:The Wavelet Representation”, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.11, No.7, pp.674-693, 1989.
[49]J. Zhang, D. Wang, and Q. N. Tran, “A Wavelet-Based Multiresolution Statistical Model for Texture”, IEEE Transaction on Image Processing, Vol.l7, No.11, pp.1621-1627, 1998.
[50]J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients”, IEEE Transaction on Signal Processing, Vol.41, No.12, pp.3445-3462, 1993.
[51]J. Ahang and O. Shunichiro, “Texture image segmentation method based on wavelet transform and neural”, Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics, Part 5(of 5), pp.4595-4600, 1998.
[52]T. Chang and C. C. Kuo, “A Wavelet Transform approach for hierarchical texture segmentation”, Signal System and Computers, Vol.2, pp.816-820, 1992.
[53]A. Bruce and H. Y. Gao, Applied Wavelet Analysis with S-PLUS, Springer-Verlag, New York, 1996.
[54]B. Y. Lee and Y. S. Tarng, “Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current”, International Journal of Advanced Manufacturing Technology, Vol.15, pp.238-243, 1999.
[55]G. Y. Chen and T. D. Bui, “Invariant Fourier-wavelet descriptor for pattern recognition”, Pattern Recognition, Vol.32, pp.1083-1087, 1999.
[56]D. Shen and H. H. S. Ip, “Discriminative wavelet shape descriptors for recognition of 2-D patterns”, Pattern Recognition, Vol.32, pp.151-165, 1999.
[57]S. Pittner and S. V. Kamarthi, “Feature extraction from wavelet coefficients for pattern recognition tasks”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.21, No.1, pp.83-88, 1999.
[58]J. M. Gallegos, J. R. Villalobos, G. Carrillo, and S. D. Cabrera, “Reduced- dimension and wavelet processing of SMD for real-time inspection”, Image Analysis and Interpretation, Proceedings of the IEEE Southwest Symposium, pp.30-36, 1996.
[59]C. H. Yeh and D. M. Tsai, “Wavelet-based approach for Ball Grid Array (BGA) substrate conduct paths inspection”, International Journal of Production Research, Vol.39, No.18, pp.4281-4299, 2001.
[60]C. H. Yeh, “Wavelet-based corner detection using eigenvectors of covariance matrices”, Pattern Recognition Letters, Vol.24, pp.2797-2806, 2003.
[61]O. Rioul and M. Vetterli, “Wavelet and signal processing”, IEEE Transactions on Signal Processing, Vol.8, pp.14-38, 1991.
[62]S. Grgic, K. Kers, and M. Grgic, “Image compression using wavelets”, Industrial Electronics, ISIE’99, Proceeding of the IEEE International Symposium, Vol.1, pp.99-104, 1999.
[63]M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform”, IEEE Transaction on Image Processing, Vol.1, pp.205-220, 1992.
[64]N. Farvardin and N. Tanabe, “Subband image coding using entropy coded quantization”, SPIE-Image Processing Algorithms and Techniques, Vol.1224, pp.240-254, 1990.
[65]A. Said and W. A. Pearlman, “A new, fast and efficient image code based on set partition in hierarchical trees”, IEEE Transactions on Circuits System Video Technology, Vol.6, pp.243-250, 1996.
[66]S. D. Servetto, K. Ramchandran, and M. T. Orchard, “Wavelet based image coding via morphology prediction of significance”, Proceedings of the IEEE International Conference on Image Processing, Vol.2, pp.530-533, 1995.
[67]D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage”, Journal of the American Statistical Association, Vol.90, No.432, pp.1200-1224, 1995.
[68]D. L. Donoho, “Denoising by soft-thresholding”, IEEE Transaction on Information Theory, Vol.41, pp.613-627, 1995.
[69]S. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets”, IEEE Transaction on Information Theory, Vol.38, pp.617-643, 1992.
[70]K. J. Han and A. H. Tewfik, “Hybrid wavelet transform filter for image recovery”, Proceedings of the Fourth International Conference on Signal Processing, Vol.1, pp.540-543, 1998.
[71]L. Feng, Y. Y. Tang, and L. H. Yang, “A wavelet approach to extracting contours of document images”, Proceedings of the Fifth International Conference on Document Analysis and Recognition, ICDAR’99, pp.71-74, 1999.
[72]S. H. Deng, H. Y. Liao, C. W. Ho, and H. R. Tyan, “Wavelet-based off-line handwritten signature verification”, Computer Vision and Image Understanding, Vol.76, No.3, pp.173-190, 1999.
[73]J. S. Lee, Y. N. Sun, and C. T. Tsai, “Wavelet based corner detection”, Pattern Recognition, Vol.26, No.6, pp.853-865, 1993.
[74]J. S. Lee, Y. N. Sun, and C. T. Tsai, “Multiscale corner detection by using wavelet transformation”, IEEE Transactions on Image Processing, Vol.4, No.1, pp.100-104, 1995.
[75]A. Quddus and M. M. Fahmy, “Fast wavelet-based corner detection technique”, Electronics Letters, Vol.35, No.4, 1999.
[76]C. H. Yeh, “Ball Grid Array (BGA) Substrate Conduct Paths Inspection Using Two-Dimension Wavelet Transform”, International Journal of Production Research, Vol.40, No.18, pp.4675-4695, 2002.
[77]C. H. Yeh, “A Novel Approach Using Two-Dimension Wavelet Transform In Ball Grid Array (BGA) Substrate Conduct Paths Inspection”, International Journal of Advanced Manufacturing Technology, Vol.3, pp.223-233, 2003.
[78]R. M. Haralick and L. G. Shapiro, “Computer and Robot Vision”, Addison-Wesley, pp.639-658, 1992.
[79]A. Khotanzad, H. Banerjee, and M. D. Srinath, “A vision system for inspection of ball bonds and 2-D profile of bonding wires in integrated circuits”, IEEE Transactions on Semiconductor Manufacturing, Vol.7, No.4, pp.413-422, 1994.
[80]H. K. Lee and S. I. Yoo, “A method for inspection of ball bonds in integrated circuits”, Systems, Man, and Cybernetics, IEEE SMC’99 Conference Proceedings, Vol.2, No.12-15, pp.975-980, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top