跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:丘聖生
研究生(外文):Sheng-sang Chiu
論文名稱:MCFC型燃料電池在商辦大樓自宅用型汽電共生系統應用特性研究
論文名稱(外文):Study and Analyses of Molten Carbonate Fuel Cell (MCFC) Type Cogeneration System Application for Commerical Buildings
指導教授:莊嘉琛
口試委員:鄭鴻斌李靖男
口試日期:2005-07-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:冷凍空調工程系所
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:96
中文關鍵詞:熔融碳酸鹽燃料電池微型汽渦輪機吸收式冷凍系統性能係數(COP)
外文關鍵詞:Molten Carbonate Fuel Cel l (MCFC)MGTabsorption refrigeration systemCOP
相關次數:
  • 被引用被引用:7
  • 點閱點閱:514
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著各國經濟發展與生活水平提高,使得目前能源需求遽增,加上環境污染日益嚴重,使得先進各國積極尋求二次能源以解決能源短缺及環境污染的問題。二次能源中,以燃料電池有不受自然環境因素影響、效率高、污染低等優點,故將成為未來的新興發電技術。
在高溫燃料電池中,熔融碳酸鹽燃料電池(MCFC)具有內重組改質能力,故有簡化系統特性,非常適合應用於分散型電廠與集中型電廠上。熔融碳酸鹽燃料電池(MCFC)排出的餘廢熱可回收用於氣渦輪機或其他熱源驅動設備組成燃料電池汽電共生系統(FCCS)。
故本論文係針對熔融碳酸鹽燃料電池汽電共生系統(MCFCCS)特性為研究主題,藉以解析熔融碳酸鹽燃料電池、微型渦輪機、吸收式冰水機等影響燃料電池電池汽電共生系統性能參數後,將其應用在熔融碳酸鹽燃料電池汽電共生系統(MCFCCS)上,以期發展出應用高效熔融碳酸鹽燃料電池汽電共生系統之最佳設計規劃。
With the economic development and growing living standard of each country, the demand for energy is terribly increasing. At the same time, resulting from the serious pollution to the environment, all the highly developed countries are trying their best to seek for 2nd energy in order to avoid from energy shortage and environmental pollution. In the scope of 2nd energy, fuel cell has advantages of high efficiency, low pollution, and un-influenced by the environment, and thus would become an emerging technology for the future.
In the category of high temperature fuel cell, the Molten Carbonate Fuel Cell (MCFC) has the capability of inner re-structuring. It has the characteristic of system simplification, and is highly applicable in establishing the decentralized and centralized-type power plants. The heat released can be recycled for gas turbines or other heat-driven equipments to constitute Fuel Cell Cogeneration System (FCCS).
This thesis focuses on the characteristics of Molten Carbonate Fuel Cell (MCFC) Type Cogeneration System and analyzes how MCFC, MGT affect the performance parameters of MCFCCS. Hopefully this application would generate the optimized design planning for high performed MCFCCS.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 文獻回顧 2
1.4 論文內容 4
第二章 雙效並流/串流式溴化鋰-水溶液(LiBr/H2O)吸收式冷凍系統效益 5
2.1 理論分析 5
2.2 串流式/並流式系統效益比較 9
第三章 三效吸收式冷凍循環效益 13
3.1 三效循環流程 13
3.2 系統模擬方式 15
3.2.1 電腦模擬流程參數 15
3.2.2 模擬條件 16
3.3 模擬結果 17
3.3.1 性能係數(COP) 17
3.3.2 蒸氣壓力 19
3.3.3 溫度 21
3.3.4 總熱傳係數與面積乘積(UA)之靈敏度分析 24
第四章 AHP串聯熔融碳酸鹽燃料電池型汽電共生系統 26
4.1 燃料電池系統原理 26
4.2 可用能計算 27
4.3 系統成本分析 29
4.4 天然氣蒸氣重組 30
4.5 燃料電池汽電共生系統 32
4.6 結果 33
第五章 微型汽渦輪機/汽燃溴化鋰-水吸收式冰水機/後燃燒混合系統性能 38
5.1 微型渦輪機/吸收式冷凍機系統 39
5.1.1 微型汽渦輪機技術 39
5.1.2 吸收式冰水機技術 39
5.1.3 間接結合微型渦輪機-吸收式冷凍機整合系統流程 39
5.1.4 直接結合微型渦輪機-吸收式冷凍機整合系統描述 40
5.2 微型渦輪機/吸收式冷凍機整合系統模擬 40
5.2.1 微型渦輪機 41
5.2.2 後燃燒器 42
5.2.3 吸收式冰水機 42
5.3 結果 43
5.3.1 微型渦輪機模擬性能 43
5.3.2 微型渦輪機/單效吸收式冰水機整合系統 43
5.3.3 分析微型渦輪機/直燃式吸收式冰水機整合系統 44
5.3.3.1 分析微型渦輪機/直燃式吸收式冰水機/後燃燒器和加入額外新鮮空氣之整合系統 45
5.3.3.2 分析微型渦輪機/直燃式吸收式冰水機/後燃燒器和未加入額外新鮮空氣整合系統 48
第六章 加壓和熱回收100kW級熔融碳酸鹽燃料電池分散式電力複合系統應用 51
6.1 燃料電池系統-熔融碳酸鹽燃料電池堆 52
6.2 燃料電池系統-熔融碳酸鹽燃料電池堆加壓及熱回收 55
6.2.1 使用增壓器之熔融碳酸鹽燃料電池複合系統 55
6.2.2 使用簡單循環汽渦輪機之熔融碳酸鹽燃料電池複合系統 56
6.2.3 再生循環汽渦輪機熔融碳酸鹽燃料電池複合系統 57
6.3 複合系統性能 59
6.4 後燃燒效應 62
6.4.1 燃料電池系統-汽渦輪機(FCS-GT)複合系統 63
6.4.2 燃料電池系統-微型汽渦輪機(FCS-MGT)系統(第一種和第二種) 67
6.5 電池堆運轉壓力之影響 68
6.5.1 燃料電池系統/汽渦輪機系統(沒有後燃燒) 68
6.5.2 燃料電池系統/微型汽渦輪機系統 69
6.6 結果比較 73
第七章 高效MCFC型燃料電池熱電冷共生系統 74
7.1 MCFC型冷電共生系統系統構造 74
7.1.1 系統性能計算 75
7.1.2 性能係數計算結果 77
7.2 MCFC型燃料電池熱電冷共生系統 77
7.2.1 系統構造 77
7.2.2 系統性能計算 79
7.2.3 性能係數結果 82
7.3 總和系統性能比較 82
第八章 結論 85
參考文獻 87
符號說明 93
[1]P. Lamp, A. Costa, F. Ziegler, M.C. Pereira, J.F. Mendes, J.P. Ojer, A.G. Conde, C. Granados, "Solar assisted absorption cooling with optimized utilization of solar energy", Int. Inst. Ref.-Gustav Lorentzen Conf. on Natural Working Fluids, Oslo, Norway, 1998, pp.483-489.
[2]G.P. Xu, Y.Q. Dai, "Theoretical analysis and optimization of a double-effect parallel-flow type absorption chille"r, Appl. Thermal Engng. 17 (1997 157-170).
[3]G.P. Xu, Y.Q. Dai, K.W. Tou, C.P. Tso, " Theoretical analysis and optimization of a double-effect parallel-flow type absorption chille"r, Appl. Thermal Engng. 16 (1996 975-987).
[4]G.C. Vliet, M.B. Lawson, R.A. Lithgow, "Water-lithium bromide double-effect absorption cooling cycle analysis", ASHRAE Trans.88 (1982) 811-823.
[5]M.B. Arun, M.P. Maiya, S. Srinivasa Murthy, "Equilibrium low pressure generator temperatures for double-effect series flow absorption refrigeration system", Appl. Thermal Engng.20 (2000) 227-242.
[6]M.B. Arun, M.P. Maiya, S. Srinivasa Murthy, "Performance comparison of double-effect parallel-flow and series flow water-lithium bromide absorption systems", Appl. Thermal Engng.21 (20001) 1273-1279.
[7]Grossman G, Wilk M, DeVault RC. "Simulation and performance analysis of triple-effect absorption cycles". ASHRAE Transactions 1994;100(2):452–62.
[8]DeVault RC, Marsala J. "Ammonia–water triple-effect absorption cycle". ASHRAE Transactions 1990;96(1):676–82.
[9]Grossman G, Wilk M. "Advanced modular simulation of absorption systems". resented at the 1992 ASME Winter Annual Meeting, Anaheim, CA, 8–13 November 1992. p.15–26.
[10]Perez-Blanco H. "Conceptual design of a high-efficiency absorption cooling cycle". Rev Int Froid 1993;16(6):429–33
[11]Ziegler F, Kahn R, Summerer F, Alefeld G. "Multi-effect absorption chillers". Rev Int Froid 1993;16(5):301–10.
[12]Gommed K, Grossman G. "Performance analysis of staged absorption heat pumps": water–lithium bromide systems. ASHRAE Transactions 1990;96(1):1590–8.
[13]Kaita Y. "Thermodynamic properties of lithium bromidewater solutions at high temperatures". Int J Refrigeration 2001;24/5:374–90.
[14]Kaita Y. "Simulation results of triple-effect absorption cycle". Int J Refrigeration 2002;25:999-1007.
[15]Bettmann D, Drenckhahn W, Reiter K. "Small cogeneration plants — from reciprocating engines to fuel cells". Power J 1993;1:1–12.
[16]Utgikar PS, Dubey SP, Prasada Rao PJ. "Thermoeconomic analysis of gas turbine cogeneration plant — a case study". J Power Energy, Proc Instn Mech Engrs 1995;209:45–54.
[17]Dunbar WR, Lior N, Gaggioli RA. "Combining fuel cells with fuel-fired power plants for improved exergy efficiency". Energy 1991;16(10):1259–74.
[18]Bedringa°s KW, Ertesva°g IS, Byggstøyl S, Magnussen BF. "Exergy analysis of solid-oxide fuel-cell (SOFC) systems". Energy 1997;22(4):403–12.
[19]Silveira JL, Walter ACS, Luengo CA. Cogeneration for small users: case studies for Brazilian tertiary sector. In: Natole R, editor. "Proceedings of ASME COGEN TURBO POWER 1995, 9th Congress and Exposition on Gas Turbines in Power Generation and Utility", Industrial and Independent Power Generation. Vienna, Austria: ASME, OH, 1995:1–7.
[20]Gardner FJ. "Thermodynamic process in solid oxide and other fuel cells". J Power Energy, Proc Instn Mech Engrs 1997;211(A):367–80.
[21]Lloyd AC, Leonard JH, George R. "Fuel cells and air quality: a California perspective". J Power Sources 1994;49(1-3):209–26.
[22]Kuehn SE. "Fuel cell near commercial reality". Power Eng Int 1994;2:37–41.
[23]Penner SS, Icerman L. "Non-nuclear energy technologies". Energy 1975;II:121–290.
[24]Selman JR. Research, "development and demonstration of molten carbonate fuel cell systems". In: Blomen LJMJ, Mugerwa MN, editors. Fuel cell systems. New York: Plenum Press, 1993:345–463.
[25]Tuna CE, Silveira JL. "Thermoeconomic analysis method for optimization of combined heat and power systems". In: Proceedings of 5th ASME/JSME Thermal Engineering Joint Conference. San Diego, CA: ASME, OH, 1999:1– 7, (CD-ROM).
[26]Jose Luz Silveira, Elisangela Martins Leal, Luiz F. Ragonha Jr. "Analysis of a molten carbonate fuel cell : cogeneration to produce electricity and cold water". Energy 2001;26891-904.
[27]B. Peters, K. Dielmann, Capstone Microturbines: "experiences with different gaseous and liquid fuels, Workshop on Energy Efficiency and Emissions Reduction with MicroGas Turbines––Technology and Operating Experience", Tarragona, 22nd October 2002.
[28]J.C. Bruno, Ll. Massagu_es, A. Coronas, "Power quality and air emission tests in a microgas turbine cogeneration plant", in: Proceedings of the International Conference on Renewable Energy and Power Quality (ICREPQ’03), Vigo (Spain), 2003.
[29]M. Cowie, "Microturbine based CHP system testing", Third Annual Workshop on Microturbine Applications, Calgary, Canda, 2003.
[30]S. Banetta, F. Paganucci, R. Giglioli, "System description and test planning for a combined heat and power (CHP) plant composed by a microgas turbine and an absorption chiller/heater", in: Proceedings de ASME Turbo Expo 2001, New Orleans, USA, 4–7 July 2001.
[31]J. Cerezo, J.C. Bruno, W. Rivera, A. Coronas, "Energy analysis of microgas turbine/absorption chiller combined systems", International Congress of Refrigeration, Washington DC, 2003.
[32]W. Ryan, "New developments in gas cooling", ASHRAE Journal 44 (4) (2002) 23–28.
[33]M.J. Moore (Ed.), "Microturbine Generators, Professional Engineering Publishing Ltd"., Institution of Mechanical Engineers, England, 2002, ISBN 1-86058-391-1.
[34]P.A. Pilavachi, "Mini- and Micro-gas turbines for combined heat and power", Applied Thermal Engineering 22 (2002) 2003–2014.
[35]J.C. Bruno, L.L. Massagu_es, A. Coronas, "Stand-alone and grid-connected performance analysis of a regenerative microgas turbine cogeneration plant", Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 218 (2004) 15–22.
[36]K.E. Herold, R. Radermacher, S.A. Klein, "Absorption Chillers and Heat Pumps", CRC Press, New York, 1995.
[37]Joan Car;es Bruno, Anton Valero, Alberto Coronas, "Performance analysis of combined microgas turbines and gas fired water/LiBr absorption chillers with post-combustion", Applied Thermal Engineering 25 (2005) 87-99.
[38]O. Grillo, "Design and part load performance of a hybrid system based on a molten carbonate fuel cell and a microgasturbine (in Italian) ", Master Thesis, University of Genoa, 2001.
[39]P. Bedont, A.F. Massardo, "Heat recovering and pressurisation systems for an existing 100kWe MCFC plant (in Italian) ", X Convegno Tecnologie e sistemi energetici complessi Sergio Stecco, 21–22 June, 2001, Genoa, Italy.
[40]A. Bosio, A.F. Massardo, "Assessment of molten carbonate fuel cell models and integration with gas and steam cycles", ASME Trans. J. Gas Turbines Power 124 (2002) 103–109.
[41]P. Bedont, O. Grillo, A.F Massardo, "Off-design performance analysis of a hybrid system based on an existing MCFC stack", ASME Paper GT-2002-30115, ASME TURBO EXPO 2002: Land, Sea, and Air, 3–6 June 2002, Amsterdam, The Netherlands.
[42]A. Agazzani, A.F. Massardo, "A tool for thermoeconomic analysis and optimisation of gas, steam and combined plants", ASME Trans. J. Eng. Gas Turbines Power 119 (1997) 885.
[43]P. Costamagna, L. Magistri, A.F. Massardo, "Design and part load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine", J. Power Sources 96 (2001) 352–368.
[44]Olivia Grillo, Loredana Magistri, Aristide F. Massardo, "Hybride systems for distributed power generation based on pressurization and heat recovering of an existing 100kW molten carbonate ful cell", J. Power Sources 115 (2003) 252-267.
[45]林儀泰, 莊嘉琛, 「燃料電池排熱利用在LiBr/H2O吸收式熱泵系統效益模擬分析」,國立臺北科技大學碩士論文, 民92。
[46]戴健珉, 莊嘉琛, 「直接甲醇型燃料電池之行動電話系統應用解析研究」, 國立臺北科技大學碩士論文, 民92。
[47]黃克修, 莊嘉琛, 「商業建築混元型空調系統應用研究」, 國立臺北科技大學碩士論文, 民91。
[48]張金杰, 莊嘉琛, 「固體高分子電解質燃料電池系統效益解析研究」,國立臺北科技大學碩士論文,民91。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊