|
[1] M. Cheryan, Ultrafiltration and Microfiltration Handbook, Technomic Publishing Co., Lancaster, PA, 1998, pp. 1 − 25, pp. 65 − 68, pp. 99 − 101, pp. 113 − 155, and pp. 237 − 288. [2] N. Lakshminarayanaiah, Equations of Membrane Biophysics, Academic Press, New York, 1984, pp. 1. [3] J. D. Seader and E. J. Henley, Separation Process Principles, John Wiley & Sons. Inc. New York, 1998, pp. 14. [4] R. Rautenbach and R. Albrecht, Membrane Process, John Wiley & Sons Ltd., New York, 1989, pp. 10 − 44 and pp. 272 − 334. [5] M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Norwell, MA, 1991, pp. 5 − 24 and pp. 198 − 311. [6] M. C. Porter, Handbook of Industrial Membrane Technology, Noyes Publications, New Jersey, 1990, pp. 136 − 259. [7] W. S. Winston Ho and K. K. Sirka (Eds.), Membrane Handbook, Van Nostrand Reinhold, New York, 1992, pp. 393 − 407 and pp. 433 − 457. [8] A. N. Cherkasov, S. V. Tsareva and A. E. Polotsky, Selective properties of ultrafiltration membranes from the standpoint of concentration polarization and adsorption phenomena, J. Membr. Sci., 104 (1995) 157. [9] A. N. Cherkasov and A. E. Polotsky, Critical particle-to-pore size ratio in ultrafiltration, J. Membr. Sci., 106 (1995) 161. [10] M. C. Porter, Membrane Filtration, Handbook of Separation Techniques for Chemical Engineers, 3rd edition, Ed. by P. A. Schweitzer, McGraw-Hill, New York, 1997, pp. 2-3 − 2-86. [11] R. W. Baker, Membrane Technology and Applications, McGraw-Hill, New York, 2000, pp. 225 − 263. [12] A. G. Fane, Ultrafilatration: factors influencing flux and rejection, in R. J. Wakeman (Ed.), Progress in Filtration and separation, Elsevier, Amsterdam, 1986, pp. 101 − 179. [13] L. A. Errede and P. D. Martinucci, Flow rate of water through porous membranes as affected by surface modification on the low−pressure side of the membrane, Ind. Eng. Chem. Pord. Res. Dev., 19 (1980) 573. [14] S. I. Nakao, T. Nomura and S. Kimura, Characteristics of macromolecular gel layer formed on ultrafiltration tubular membrane, AIChE J., 25 (1979) 615. [15] A. G. Fane, C. J. D. Fell and A. Suki, The effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes, J. Membr. Sci., 16 (1983) 195. [16] H. B. Hopfenberg, V. T. Stannet and M. W. Bailey, Solute−solute interactions in ultrafiltration treatment of paper mill wastes, AIChE Symp. Ser. No. 139, 70 (1974) 1. [17] A. S. Jönsson and G. Trägårdh, Fundamental principles of ultrafiltration, Chem. Eng. and Proc., 27 (1990) 67. [18] H. Nabetani, M. Nakajima, A. Watanabe, S. Nakao and S. Kumura, Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin, AIChE J., 36 (1990) 907. [19] H. M. Yeh and T. W. Cheng, Resistance−in−series for membrane ultrafiltration in hollow fibers of tube−and shell arrangement, Separation Sci. and Tech., 28 (6) (1993) 1341. [20] G. Jonsson, Boundary layer phenomena during ultrafiltration of dextran and whey protein solutions, Desalination, 51 (1984) 61. [21] J. G. Wijmans, S. Nakao and C. A. Smolders, Flux limination in ultrafiltration: osmotic pressure model and gel model, J. Membr. Sci., 20 (1984) 115. [22] W. F. Blatt, A. Dravid, A. S. Michaels and L. Nelsen, Solute polarization and cake formation in membrane ultrafiltration: cause, consequences, and control techniques, in J. E. Flinn. (Ed.), Membrane Science and Technology, Plenum Press, New York, 1970, pp. 44 − 97. [23] H. M. Yeh and T. W. Cheng, Osmotic−pressure model with permeability analysis for ultrafiltration in hollow−filber membrane modules, Separations Technology, 3 (1993) 91. [24] T. W. Cheng, H. M. Yeh and C. T. Gau, Flux analysis by modified osmotic−pressure model for laminar ultrafiltration of macromolecular solution, Sep. and Puri. Tech., 13 (1998) 1. [25] L. Graetz, Über die Wärmeleitungsfähigkeit von Flüssigkeiten, Ann. Phys. Chem., 18 (1883). [26] M. D. Lévêque, Les Lois de la Transmission de Chaleur pour Convection, Ann. Mines, 13, April 1928. [27] T. W. Cheng, H. M. Yeh and C. T. Gau, Resistance analyses for ultrafiltration in tubular membrane module, Separation Sci. and Tech., 32 (16) (1997) 2623. [28] E. Matthiasson, The role of macromolecular adsorption in fouling of ultrafiltration membranes, J. Membr. Sci., 16 (1983) 23. [29] V. Gekas and B. Hallstrom, Mass transfer in the membrane concentration polarization layer under turbulent crossflow. I. Critical literature review and adaptation of existing Sherwood correlations to membrane operations, J. Membr. Sci., 30 (1987) 153. [30] E. W. Pitera and S. Middleman, Convection promotion in tubular desalination membranes, Ind. Eng. Chem., Process. Des. Dev., 12 (1973) 52. [31] A. L. Copas and S. Middleman, Use of convection promotion in the ultrafiltration of a gel−forming solute, Ind. Chem., Process Des. Dev., 13 (1974) 143. [32] H. B. Winzeler and G. Belfort, Enhanced performance for pressure− driven membrane processes: the argument for fluid instabilities, J. Membr. Sci., 80 (1993) 35. [33] M. J. van der Waal and I. G. Racz, mass transfer in corrugated−plate membrane modules. I. Hyperfiltration experiments, J. Membr. Sci., 40 (1989) 243. [34] V. Mavrov, N. D. Nikolov, M. A. Islam and J. D. Nikolova, An investigation on the configuration of inserts in tubular ultrafiltration module to control concentration polarization, J. Membr. Sci., 75 (1992) 197. [35] G. Belfort, R. H. Davis and A. L. Zydney, The behavior of suspensions and macromolecular solutions in crossflow microfiltration, J. Membr. Sci., 96 (1994) 1. [36] J. M. Radvich and R. E. Sparks, Electrophoretic techniques for controlling concentration polarization in ultrafiltration, Polym. Sci. Technol., 13 (1980) 249. [37]M. F. Edwards and W. L. Wilkinson, Review of potential applications of pulsating flow in pipes, Trans. Inst. Chem. Eng.,49 (1971) 85. [38] H. Bauser, H. Chmiel, N. Stroh and E. Walitza, Control of concentration polarization and fouling in medical, food and biotechnical applications, J. Membr. Sci., 27 (1986) 195. [39] A. A. García, M. R. Bonen, J. Ramírez−Vick, M. Sadaka and A. Vuppu, Bioseparation Process Science, Blackwell Science Inc., Massachusetts (1999), pp. 152 − 156. [40] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1971, pp. 51 and pp. 211. [41]B. H. Chiang and M. Cheryan, Ultrafiltration on skim milk in hollow fibers, J. Food Sci., 51 (1986) 340. [42] M. Assadi and D. A. White, A model for determining the steady state flux of inorganic microfiltration membrane, Chem. Eng. J., 48 (1992) 11. [43] H. M. Yeh and H. H. Wu, Membrane ultrafiltration in combined hollow-fiber module systems, J. Membr. Sci., 124 (1997) 93. [44] H. M. Yeh and J. W. Tsai, Membrane ultrafiltration in multipass hollow-fiber modules, J. Membr. Sci., 142 (1998) 61. [45] H. M. Yeh and P. C. Huang, Effect of rod-radius variation on ultrafiltration in a solid-rod tubular-membrane., J. Membr. Sci., 243 (2004) 357. [46] H. M. Yeh and K. T. Chen, Improvement of ultrafiltration performance in tubular membranes using a twisted wire-rod assembly, J. Membr. Sci., 178 (2000) 43. [47] H. M. Yeh, H. Y. Chen and K. T. Chen, Membrane ultrafiltration in a tubular module with a steel rod inserted concentrically for improved performance, J. Membr. Sci., 168 (2000) 121.[48] T. W. Cheng, A study on the hollow−fiber membrane ultrafiltration, Ph.D Thesis, National Taiwan University, Taipei, Taiwan, R.O.C., 1992, pp. 146. [49] P. C. Huang, Effects of hydraulic behavior on ultrafiltration in a membrane tube inserted concentrically with a solid rod, Master Thesis, Tamkang University, Tamsui, Taiwan, R.O.C., 2003. [50] K. T. Chen, A study on ultrafiltration in membrane tubes of helical−annulus path, Master Thesis, Tamkang University, Tamsui, Taiwan, R.O.C., 1999. [51] T. C. Liu, Improvement in permeate flux by varying the angle of wire spiral through wired membrane ultrafiltration modules, Master Thesis, Tamkang University, Tamsui, Taiwan, R.O.C., 2002. [52] H. M. Yeh and Y. F. Chen, Modified analysis of permeate flux for ultrafiltration in a solid−rod tubular membrane, J. Membr. Sci., 251 (2005) 255. [53] H. M. Yeh and Y. F. Chen, Permeate−flux analysis for ultrafiltration in a tubular membrane inserted with a solid rod of varying radius, submitted to Chem. Eng. Sci., (2005).
|