|
[1]A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, vol. 6, pp. 635-641, Aug. 1990
[2]A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems. New York: Wiley 1977.
[3]V. A. Morozonv, Methods for Solving Incorrectly Posed Problems. New York: Spring-Verlag, 1984
[4]C. De Mol, “A critical survey of regularized inversion methods,” in inverse Problems in Scattering and Imaging, M. Bertero and E. R. Pike, Eds. Bristol, U.K.: Adam Hilger, 1992, pp. 345-370
[5]B. Hofmann, “Regularization of nonlinear problems and the degree of ill-posedness,”in Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine, G. Anger, R. Gorenflo, and H. Jockmann, Eds. New York: Wiley 1993, pp. 174-188.
[6]N. N. Bojarski, “A survey of the physical optics inverse scattering identity,” IEEE Trans. Antennas Propagat., vol. 30, pp.980-989, Sept.1982.
[7]R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969
[8]T. H. Chu and N. H. Farhat, “Polarization effects in microwave diversity imaging of perfectly conducting cylinders,” IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.
[9]M. Moghaddam and W. C. Chew, “Nonlinear two-dimensional velocity profile inverse using Time-domain data,” IEEE Trans. Geosci Remote Sensing, vol. 30,pp. 147-156, Jan. 1992
[10]W. Yu, Z. Peng, and L. Jen, “A fast convergent method in electromagnetic inverse scattering,” IEEE Trans. Antennas Propagation., Vol. 44, pp. 1529-1532, Nov. 1996.
[11]A. Qing and L. Jen, “Microwave imaging of dielectric cylinder in layered media,” Journal of Electromagnetic Waves and Applications., vol. 11, no.2, pp. 259-269, 1997
[12]W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity using the distorted Born iterative method,” IEEE Trans. Med. Imag., vol. 9, pp. 218-225, 1990.
[13]W. C. Chew and Q. H. Liu, “Inversion of induction tool measurements using the distorted Born iterative method an CG-FFHT” IEEE Trans. Geosci. Remote Sensing., vol. 32,pp. 878-884, July 1994.
[14]R. E. Kleinman and P. M. van den Berg, “A modified gradient method for two-dimensional problems in tomography,” J. Comput. Appl. Math., vol. 42, no. 1, pp.17-35, 1992.
[15]P. M. van den Berg and M. van der Horst, “Nonlinear inverse in induction logging using the modified gradient method,” Radio Sci., vol. 30, pp.1355-1369, 1995.
[16]A. Roger, ”Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Trans. Antennas Propagat., vol. Ap-29, pp. 232-238, Mar.1981.
[17]H. T. Lin and Y. W. Kiang, “Microwave imaging for a dielectric cylinder,” IEEE Trans. Microwave Theory Tech., vol. 42, pp.1572-1579, Aug. 1994.
[18]A. Qing and L. Jen, “A novel method for microwave imaging of dielectric cylinder in layered media,” Journal of Electromagnetic Waves and Applications., vol. 11, pp. 1337-1348, Oct. 1997
[19]D. Colton and P. Monk, “A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region,” SIAM J. Appl. Math., vol. 45, pp. 1039–1053, 1985.
[20]F. Hettlich, “Two methods for solving an inverse conductive scattering problem,” Inv. Probl., vol. 10, pp. 375–385, 1994.
[21]W. C. Chew and G. P. Otto, “Microwave imaging of multiple conducting cylinders using local shape functions,” IEEE Microwave Guided Wave Lett., vol. 2, pp. 284–286, July 1992.
[22]W. H. Weedon and W. C. Chew, “Time-domain inverse scattering using the local shape function method,” Inv. Probl., vol. 9, pp. 551–564, 1993.
[23]G. P. Otto and W. C. Chew, “Inverse scattering of Hz waves using local shape-function imaging: A T-matrix formulation,” Int. J. Imag. Syst. Technol., vol. 5, no. 1, pp. 22–27, 1994.
[24]M. M. Ney, A. M. Smith, and S. Studchly, “A solution of electromagnetic imaging using pseudoinverse transformation,” IEEE Trans. Med. Imag., vol. MI-3, pp. 155–162, 1984.
[25]D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. New York: Springer-Verlag, 1998.
[26]A. Tarantola and B. Valette, “Generalized nonlinear inverse problems solved using the least squares criterion,” Rev. Geophys. Space Phys., vol. 20, pp. 219–232, 1982.
[27]A. Tarantola, “A strategy for nonlinear elastc inversion of seismic reflection data,” Geophysics., vol. 51, pp. 1893–1903, 1986.
[28]I. T. Rekanos, T. V. Yioultsis, and T. D. Tsiboukis, “Inverse scattering using the finite-element method and a nonlinear optimization technique,” IEEE Trans. Microwave Theory., vol. 47, pp. 336–344, Mar. 1999.
[29]W. Wang and S. Zhang, “Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies,” IEEE Trans. Antennas Propagate., vol. 40, pp. 1292–1296, Nov. 1992.
[30]T. A. W. M. Lanen and D. W. Watt, “Singular value decomposition: A diagnostic tool for ill-posed inverse problems in optical computed tomography,” in Detection Technology for Mines and Minelike Targets, A. C. Dubey et al., Eds. Bellingham, WA: SPIE, 1995, pp. 174–185.
[31]T. S. Low and B. Chao, “The use of finite elements and neural networks for the solution of inverse electromagnetic problems,” IEEE Trans. Magn., vol. 28, pp. 3811–2813, May 1992.
[32]S. R. H. Hoole, “Artificial neural networks in the solution of inverse electromagnetic field problems,” IEEE Trans. Magn., vol. 29, pp. 1931–1934, Feb. 1993.
[33]M. R. Azimi-Sadjadi and S. A. Stricker, “Detection and classification of buried dielectric anomalies using neural networks—Further results,” IEEE Trans. Instrum. Meas., vol. 43, pp. 34–39, Feb. 1994.
[34]I. Elshafiey, L. Upda, and S. S. Upda, “Solution of inverse problems in electromagnetics using Hopfield neural networks,” IEEE Trans. Magn., vol. 31, pp. 852–861, Jan. 1995.
[35]A. K. Hamid and M. AlSunaidi, “Inverse scattering by dielectric circular cylindrical scatterers using a neural network approach,” in 1997 IEEE Int. Symp. Antennas Propagat., Montreal, QC, Canada , pp. 2278–2281, July 1997
[36]F. C. Morabito, A. Formisano, and R. Martone, “Wavelet tools for improving the accuracy of neural network solution of electromagnetic inverse problems,” IEEE Trans. Magn., vol. 34, pp. 2968–2971, May 1998.
[37]S. Caorsi et al., “Microwave imaging method using a simulated annealing approach,” IEEE Microwave Guided Wave Lett., vol. 1, pp. 331–333, Nov. 1991.
[38]L.Garneroetal. “Microwave imaging complex permittivity reconstruction by simulated annealing,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1801–1807, Nov. 1991.
[39]B. Cheng, “A cost minimization approach to microwave imaging using simulated annealing,” in 1993 Int. Joint Conf. Neural Networks, Aichi, Japan, pp. 1565–1568 , Oct. 1993.
[40]A. A. Arkadan, T. Sareen, and S. Subramaniam, “Genetic algorithms for nondestructive testing in crack identification,” IEEE Trans. Magn., vol. 30, pp. 4320–4322, June 1994.
[41]C. C. Chiu and P. T. Liu, “Image reconstruction of a perfectly conducting cylinder by the genetic algorithm,” Proc. Inst. Elect. Eng., Microw., Antennas Propagat., vol. 143, no. 3, pp. 249–253, 1996.
[42]Z. Q. Meng, T. Takenaka, and T. Tanaka, “Microwave imaging of conducting cylinders using genetic algorithms,” 1998 Int. Conf. Microwave Millimeter Wave Tech., pp. 933–936, 1998.
[43]A. Qing and S. Zhong, “Microwave imaging of two-dimensional perfectly conducting objects using real-coded genetic algorithm,” in 1998 IEEE Antennas and Propagation Int. Symp., Atlanta, GA, pp. 726–729, June 1998.
[44]C. S. Park and B. S. Jeong, “Reconstruction of a high contrast and large object by using the hybrid algorithm combining a Levenberg–Marquardt algorithm and a genetic algorithm,” IEEE Trans. Magn., vol. 35, pp. 1582–1585, Mar. 1999.
[45]A. Qing and C. K. Lee, “Shape reconstruction of a perfectly conducting cylinder using real-coded genetic algorithm,” in 1999 IEEE Antennas and Propagation Int. Symp., Orlando, FL, pp. 2148–2151, July 1999.
[46]A. Qing ,“Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy,” Antennas and Propagation, IEEE Transactions vol 51, Issue 6 ,pp.1251 – 1262, June 2003.
[47]A. Qing ,“Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES),” Antennas and Propagation, IEEE Transactions.,vol. 52, Issue 5. pp.1223 – 1229, May 2004.
[48]C. C. Chiu and Y. W. Kiang, “Microwave imaging of multiple conducting cylinders,” IEEE Trans. Antennas Propagat., vol. 40, pp. 933–941, 1992.
[49]C. C. Chiu and P. T. Liu, “Image reconstruction of a complex cylinder illuminated by TE waves,” IEEE Trans. Microw Theory Tech., vol. 44, no. 10, pp. 1921–1927, Oct. 1996.
[50]C. C. Chiu and P. T. Liu, “Electromagnetic TE-wave inverse scattering of a conductor by the genetic algorithm,” Int. J. Imaging Syst. Technol., vol. 9, no. 5, pp. 388–394, 1998.
[51]A. Qing ,“Electromagnetic imaging of two-dimensional perfectly conducting cylinders with transverse electric scattered field,” Antennas and Propagation, IEEE Transactions, vol. 50, Issue 12, pp.1786 – 1794, Dec. 2002
[52]C. C. Chiu and Y. M. Kiang, “Electromagnetic imaging for an imperfectly conducting cylinders,” IEEE Trans. Microwave Theory Tech, vol. 39, pp. 1632- 1639, Sept. 1991.
[53]F. M. Tesche, “On the inclusion of loss in time domain solutions of electromagnetic interaction problems,” IEEE Trans. Electromagn. Compat., vol. 32, pp. 1-4, 1990. [54]J. Michael Johnson and Yahya Rahmat-Samii,”Genetic Algorithm in Engineering Electromagnetics,” IEEE Antennas and Propagation Magazine, vol.39,No.4, August 1997
[55]R. F. Harrington, Time-harmonic Electromagnetic Fields. New York: McGraw-Hill, 1961.
|