跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊文華
研究生(外文):Wen-Hua Yang
論文名稱:拉伸應變及應力回復對聚二甲基矽氧烷鍍金之漣漪型態影響
論文名稱(外文):Influence of tensile strain and stress recovery on the ripple topography of gold thin coatings deposited on Polydimethylsiloxane
指導教授:林清彬林清彬引用關係
指導教授(外文):Ching-Bin Lin
學位類別:碩士
校院名稱:淡江大學
系所名稱:機械與機電工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:87
中文關鍵詞:聚二甲基矽氧烷漣漪皺波拉伸應變回復
外文關鍵詞:PolydimethylsiloxaneRippleWrinkleTensileStress recovery
相關次數:
  • 被引用被引用:2
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究已成功將聚二甲基矽氧烷(PDMS)薄膜給予拉伸及固定應變後,於薄膜表面濺鍍沈積一層金鍍層;經應變回復後於薄膜表面形成漣漪結構。另外,大面積漣漪結構在薄膜表面形成過程中,會在PDMS彈性薄膜內強度較弱之分子鏈結構與缺陷處,產生類差排、裂痕及排向表面裂縫等缺陷。
本研究也探討拉伸應變、金鍍層厚度與應變回復量對漣漪結構、波長和振幅之影響。實驗結果發現,漣漪結構之波長隨拉伸應變(30%、50%、70%、90%及110%)增加而減小;隨金鍍層厚度增加而增加;隨應變回復量增加而減小。另外,本研究在PDMS彈性薄膜表面成型出微流道浮雕(Base-relief),施予雙軸向拉伸後,以治具給予拘束固定,經鍍金後進行應變回復,於微流道兩側得到漣漪結構;PDMS薄膜給予雙軸向拉伸應變後,置於聚甲基丙烯酸酯平板上,藉由PDMS彈性薄膜與聚甲基丙烯酸酯界面間之摩擦阻抗,得到一種不規則波型之皺波型態。將此皺波結構予以電鑄鎳及使用UV膠轉印作二次翻模,成功地翻製高分子皺波結構。
A novel manufacturing process to make a ripple structure with large area on the Polydimethylsiloxane (PDMS) film has been developed. A PDMS film with constrain tensile strain and deposited with gold film on surface by sputtering, and then released the tensile strain, the ripple structure was formed on surface of the film. During the history of the ripple structure was formed, the dislocation-like, crack and oriented surface crack easily happed in the ripple structure.
The study also probed into the effect of tensile strain, thickness of gold film and strain release on wavelength and amplitude of the ripple structure of the PDMS film. The wavelength of ripple structure decreases with increasing tensile strain (30%, 50%, 70%, 90%, 110%) as well as strain released, and increases with increasing thickness of gold film. In addition, this study has been manufactured micro base-relief channels on surface of the PDMS film. Then the film with a forced elongation in bi-axial direction was fixed by mechanical locking, and was deposited with gold film on it. After tensile strain released ripple structure was formed on edge of micro-channel. Besides, we make a wrinkle structure with irregular wave on PDMS film when the film with a forced elongation in bi-axial direction lays on a Poly(Methyl Methacrylate) (PMMA) sheet. Because of the fact that friction resistant in the interface between PDMS film and PMMA sheet. we also make a nickel stamp with wrinkle structure by using electroforming. Finally the polymeric (SU-8 resist) wrinkle structure has been successfully replicated with the stamp by imprinting.
總目錄
中文摘要………………………………………………………………....................Ⅰ
英文摘要…………………………………………………………………………....Ⅱ
總目錄 …………………………………………………………………..Ⅲ
圖目錄 …………………………………………………………………...V
表目錄 …………………………………………………………….…... ..X
符號說明…………………………………………………………….…..XI
壹、導論 1
1-1 前言 1
1-2 文獻回顧 2
1-2.1 漣漪製作方法 2
1-2.1.1離子轟擊法 2
1-2.1.2雷射照射法 3
1-2.1.3薄膜沈積和熱應力 4
1-2.1.4機械拉伸法 5
1-2.2 漣漪性質探討 7
1-3 研究範疇 9
貳、實驗設計 14
2-1 實驗材料 14
2-2 實驗設備 14
2-3 實驗步驟 15
2-3.1 PDMS調製 15
2-3.2矽晶片清洗 16
2-3.3旋轉塗佈製備薄膜 16
2-3.4漣漪(Ripple)試片製作 16
2-3.5皺波(Wrinkle)試片製作 17
2-3.6表面形態觀察及特徵尺寸量測 17
2-3.6.1光學顯微鏡(Optical Microscope) 17
2-3.6.2掃描式電子顯微鏡(Scanning Electron Microscopy) 17
2-3.6.3原子力學顯微鏡(Atomic Force Microscope) 18
2-3.6.4光學干涉檢測 18
2-3.7皺波結構之不飽和聚酯翻模 18
2-3.8電鑄翻模 19
2-3.9 UV膠轉印 20
2-3.10影像分析 20
參、結果與討論 26
3-1漣漪及皺波的形成機制 26
3-2漣漪結構的缺陷 29
3-2.1類差排(Dislocation-like) 29
3-2.2裂痕(Crack) 30
3-2.3排向表面裂縫(Oriented surface crack) 30
3-3拉伸應變對漣漪結構特徵尺寸之影響 31
3-4回復應變對漣漪結構特徵尺寸之影響 33
3-5邊界拘束對漣漪結構之影響 34
3-5.1方框及表面俱微流道浮雕(Base-relief) 34
3-5.2四方形平貼 36
3-6電鑄鎳模仁與UV膠轉印 36
肆、結論 83
伍、參考文獻 84




圖目錄
圖 1-1圖1-1自然界形成之漣漪(a)沙漠;(b)玻璃受空氣離子束轟擊,圖中突出的缺陷為玻璃表面不潔淨所導致,白色箭頭指示離子入射的方向;(c)沙丘側邊;(d)天空的雲朵 10
圖 1-2飛秒雷射設備示意圖 11
圖 1-2製作鉑桿(Platinum rod)過程之示意 12
圖 1-2波紋方向(a)受拉伸時;(b)回復應力時 13
圖 2-1拉伸試片示意圖 21
圖 2-2拉伸治具示意圖 22
圖 2-3濺鍍時間與塗佈厚度之關係圖 23
圖 2-4雷射照射具漣漪結構之PDMS表面示意圖 24
圖 2-5經Scion image 分析之結果(a)皺波圖案;(b)FFT轉換結果;(c)特徵波長及強度關係圖 25
圖 3-1漣漪形成機制之示意圖(a)將PDMS彈性薄膜作單軸拉伸;(b)鍍上一層金薄膜;(c) 應力回復後產生漣漪;(d)金薄膜較厚時產生的撕裂 39
圖 3-2 PDMS彈性薄膜厚度200 μm,拉伸應變50%,鍍金時間分別為(a) 4秒;(b) 20秒 之AFM-3D Profile圖 ....40
圖 3-3 PDMS彈性薄膜中有孔洞(Voids ),附近產生不規則之漣漪 41
圖 3-4(a)~(c)皺波形成機制之示意圖;(d)PDMS彈性薄膜厚度200 μm,鍍金時間6秒之AFM 3D-Profile 42
圖 3-5 PDMS彈性薄膜厚200 μm,鍍金時間4秒,拉伸應變50%回復後產生類差排之(a)OM照片;AFM之(b)Roughness analysis;(c)Section analysis;(d) 3D-profile 43
圖 3-6 PDMS彈性薄膜厚200 μm,鍍金時間20秒,拉伸應變50%,回復應變後產生之亮點…………………………………………44
圖 3-7 PDMS彈性薄膜厚200 μm,鍍金時間20秒,拉伸應變30%,應力回復後產生裂痕之OM照片 45
圖 3-8 PDMS彈性薄膜厚200 μm,拉伸應變110%,鍍金20秒,回復應變10%,產生排向表面裂縫穿過漣漪之連續拍攝照片 47
圖 3-9排向表面裂縫前進時間與距離之關係圖 49
圖 3-10 PDMS彈性薄膜厚度400 μm,鍍金時間20秒,拉伸應變58%之SEM照片 50
圖 3-11 PDMS彈性薄膜厚度200um,拉伸應變30%,鍍金時間4秒(a)OM圖(500X);AFM分析圖(b)3D profile;(c)Section analysis;(d)RMS, Ra, Rmax, Rz………………………………51
圖 3-12 PDMS彈性薄膜厚度200 μm,拉伸應變50%,鍍金時間4秒(a)OM圖(500X);AFM分析圖(b)3D profile;(c)Section analysis;(d)RMS, Ra, Rmax, Rz 52
圖 3-13 PDMS彈性薄膜厚度200 μm,拉伸應變70%,鍍金時間4秒(a)OM圖(500X);AFM分析圖(b)3D profile;(c)Section analysis;(d)RMS, Ra, Rmax, Rz 53
圖 3-14 PDMS彈性薄膜厚度200 μm,拉伸應變90%,鍍金時間4秒(a)OM圖(500X);AFM分析圖(b)3D profile;(c)Section analysis;(d)RMS, Ra, Rmax, Rz 54
圖 3-15 PDMS彈性薄膜厚度200 μm,拉伸應變110%,鍍金時間4秒(a)OM圖(500X);AFM分析圖(b)3D profile;(c)Section analysis;(d)RMS, Ra, Rmax, Rz;(e)雷射亮點圖…………..55
圖 3-16 PDMS彈性薄膜厚度200 μm,鍍金時間4秒(a)拉伸應變與漣漪結構波長;(b)拉伸應變與漣漪結構振幅之關係圖 57
圖 3-17 PDMS彈性薄膜厚度200 μm,拉伸應變30%,鍍金時間20秒(a)OM圖(500X);AFM分析圖(b)3D profile;(c)Section analysis;(d)RMS, Ra, Rmax, Rz 58
圖 3-18 PDMS彈性薄膜厚度200 μm,拉伸應變50%,鍍金時間20秒(a)OM圖(500X);AFM分析圖(b)3D profile;(c)Section analysis;(d)RMS, Ra, Rmax, Rz 59
圖 3-19 PDMS彈性薄膜厚度200 μm,拉伸應變70%,鍍金時間20秒(a)OM圖(500X);AFM分析圖(b)3D profile;(c)Section analysis;(d)RMS, Ra, Rmax, Rz 60
圖 3-20 PDMS彈性薄膜厚度200 μm,拉伸應變90%,鍍金時間20秒(a)OM圖(500X);AFM分析圖(b)3D profile;(c)Section analysis;(d)RMS, Ra, Rmax, Rz 61
圖 3-21 PDMS彈性薄膜厚度200 μm,拉伸應變110%,鍍金時間20秒(a)OM圖(500X);AFM分析圖(b)3D profile;(c)Section analysis;(d)RMS, Ra, Rmax, Rz; (e)雷射干涉點 62
圖 3-22 PDMS彈性薄膜厚度200 μm,鍍金時間20秒(a)拉伸應變與漣漪波長;(b)拉伸應變與漣漪振幅之關係圖 64
圖 3-23 PDMS彈性薄膜厚度200 μm,拉伸應變110%,鍍金時間4秒,回復應變(a)10%;(b)20%;(c)30%;(d)40%;(e)50%;(f)60%;(g)70%;(h)80%;(i)90%;(j)100%之雷射干涉點 65
圖 3-24 PDMS彈性薄膜厚度200 μm,拉伸應變110%,鍍金時間20秒,回復應變(a)10%;(b)20%;(c)30%;(d)40%;(e)50%;(f)60%;(g)70%;(h)80%;(i)90%;(j)100%之雷射干涉點 66
圖 3-25 PDMS彈性薄膜厚度200 μm,拉伸應變110%,金鍍層厚度(a)4秒;(b)20秒 之回復應變與漣漪波長之關係圖 69
圖 3-26拘束PDMS彈性薄膜之治具示意圖 70
圖 3-27 PDMS彈性薄膜厚400 μm,鍍金時間20秒(a) 給予5%等軸向之拉伸應變後,使用方框拘束,經鍍金後應力回復,接近方塊中央區域;(b)未拉伸經鍍金之OM照片 71
圖 3-28 PDMS彈性薄膜厚400 μm,俱微流道浮雕給予5%等軸向之拉伸應變,以方框束縛經鍍金後,再予以應變回復,在PDMS彈性薄膜介於鋁製方塊四周與中央間區域,產生之漣漪結構OM照片,金鍍層厚度(a)4秒;(b)20秒 72
圖 3-29 PDMS彈性薄膜厚400 μm,鍍金時間20秒,給予5%等軸向之拉伸應變,除去方框拘束之漣漪結構OM照片 73
圖 3-30 PDMS彈性薄膜厚400 μm,給予5%等軸向之拉伸應變,以方框拘束鍍金,鍍金時間20秒,應力回復後鋁製方塊四周之(a)OM照片;(b)SEM照片 74
圖 3-31薄膜表面斷層漣漪分布示意圖 75
圖 3-32薄膜斷層處之應力分佈圖 76
圖 3-33 PDMS彈性薄膜厚度200 μm,鍍金時間6秒(a)OM圖(500X);AFM分析圖(b) 3D profile;(c)Flatten;(d) Region I-Section analysis;(e) Region II-Section analysis;(f) Region III-Section analysis 77
圖 3-34 PDMS薄膜皺波之型態(a)中央區域;(b)周圍區域 78
圖 3-35真空濺鍍機沈積不同金屬之厚度分佈圖 79
圖 3-36鎳模仁表面因氣泡造成之隆起處 80
圖 3-37電鑄鎳模仁之(a)SEM照片;AFM分析圖(b) 3D profile;(c)Flatten;(d) Region I-Section analysis;(e) Region II-Section analysis;(f) Region III-Section analysis;(g) Region IV-Section analysis 81
圖 3-38 UV膠轉印成型之 (a)SEM照片;AFM分析圖(b) 3D profile;(c)Flatten;(d) Region I-Section analysis;(e) Region II-Section analysis;(f) Region III-Section analysis 82
表目錄
表 3-1 排向表面裂縫前進關係 48
表 3-2 PDMS彈性薄膜厚度200 μm,鍍金時間4秒,不同拉伸應變與漣漪結構特徵尺寸關係 56
表 3-3 PDMS彈性薄膜厚度200 μm,鍍金時間20秒,不同拉伸應變與漣漪結構特徵尺寸關係 63
表 3-4 PDMS彈性薄膜厚度200 μm,拉伸應變110%,鍍金時間20秒,亮點間距與漣漪結構波長之關係 67
表 3-5 PDMS彈性薄膜厚度200 μm,拉伸應變110%,鍍金時間20秒,亮點間距與漣漪波長之關係 68
伍、參考文獻
1.Navez M, Sella C and Chaperot D, C.R. Acad. Sci., Paris, (1962) pp254-240.
2.U Valbusa1, C Boragno and F Buatier de Mongeot,”Nanostructuring surfaces by ion sputtering”, J. Phys.: Condens. Matter, 14(2002) pp8153-8175.
3.H. X. Qian, W. Zhou, Y. Q. Fu, B. K. A. Ngoi, G. C. Lim, “Crystallographically-dependent ripple formation on Sn surface irradiated with focused ion beam”, Applied Surface Science, (2004) pp1-11.
4.T. M. Mayer, E. Chason, A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces”, J. Appl. Phys., 76(3), (1994) pp1633-1643.
5.D. Flamm, F. Frost, D. Hirsch, “Evolution of surface topography of fused silica by ion beam sputtering “, Appl. Surf. Sci., 179(2001) pp95.
6.E. Chason, T. M. Mayer, B. K. Kellerman, D. T. McIlroy, and A. J. Howard, “Roughening instability and Evolution of the Ge(001) surface during ion sputtering”, Physical Review Letters, 72(1994) pp3040-3043.
7.J.J. Vajo, R.E. Doty, E.-H. Cirlin, “Influence of energy, flux, and fluence on the formation and growth of sputtering-induced ripple topography on silicon”, J. Vac. Sci. Technol. A, 14 (1996) pp2709.
8.M. Kanazawa, A. Takano, Y. Higashi, M. Suzuki, Y. Homma, “Observation of rippleformation on O2+-irradiated GaN surfaces using atomic force microscop y”, Appl. Surf. Sci., 203-204 (2003) pp152
9.Byungnam Kahng, Jeenu Kim, “Nanoscale pattern formations on surface induced by ion sputtering”, Current Applied Physics, 4 (2004) pp115-120.
10.Ingo Lieberwirth, Frank Katzenberg, and Jurgen Petermann, “Nanostructured Polymer Films by Electron-Beam Irradiation and Selective Metallization”, Advanced Materials, 10,No. 13 (1998) pp997.
11.Matthew Daniels, Physics, ”Novel method for large scale nanopatterning”, 10-11, Pacific Lutheran University.
12.L. K. Ang, Y. Y. Lau, R. M. Gilgenbach, H. L. Spindler, J. S. Lash, and S. D. Kovaleski, “Surface instability of multipulse laser ablation on a metallic target”, Journal of applied physics, 83 (1998) pp4466-4471.
13.Jurgen Reif, Florenta Costache, Matthias Henyk, Stanislav V., Pandelov, “Ripples revisited:non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics.” Applied Surface Science, 197-198 (2002) pp891-895.
14.Ned Bowden, Scott Brittain, Anthony G. Evans, John W. Hutchinson & George M. Whitesides, “Spontaneous formation of ordered structures in thin filmsofmetals supported on an elastomeric polymer”, Nature, 393 (1998) pp146-149.
15.Ned Bowden, Wilhelm T. S. Huck, Kateri E. Paul, and George M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasmaoxidation of an elastomeric polymer”, Applied Physics Letters, 75(17), (1999) pp2557-2559.
16.Wilhelm T. S. Huck, Ned Bowden, Patrick Onck, Thomas Pardoen, John W. Hutchinson, and George M. Whitesides, “Ordering of spontaneously formed buckles on planar surfaces”, Langmuir, 16 (2000) pp3497-3501.
17.A. L. VolynskII, S. Bazhenov, O. V. Lebedeva, N. F. Bakeev, “Mechanical buckling instability of thin coatings deposited on soft polymer substrates”, Journal of materials science, 35 (2000) pp547-554.
18.Frank Katzenberg, “Irradiation- and strain-induced self-organization of elastomer surfaces”, Macromol. Mater. Eng., 286 (2001) pp26-29.
19.Frank Katzenberg, “Cost-effective production of highly regularnanostructured metallization layers”, Nanotechnology, 14 (2003) pp1019-1022.
20.Christopher M. Stafford,” A buckling-based metrology for measuring the elastic moduli of polymeric thin films”, Nature Materials, 3 (2004) pp545-550.
21.Jan Groenewold, “Wrinkling of plates coupled with soft elastic media”, Physica A, 298 (2001) pp32-45.
22.S. Park, B. Kahng, H. Jeong, and A. –L. Barabasi, “Dynamics of ripple formation in sputter erosion : nonlinear phenomena”, Physical Review Letters, 83 (1999) pp3486-3489.
23.S. Rusponi, C. Boragno, and U. Valbusa, “Ripple structure on Ag(110) surface induced by ion sputtering”, Physical review Letters, 78 (1997) pp2795-2798.
24.Z. X. Jiang and P. F. A. Alkemade, “The complex formation of ripples during depth profiling of Si with low energy, grazing oxygen beams”, Applied Physics Letters, 73(3), (1998) pp315-317.
25.Jonah Erlebacher and Michael J. Aziz, Eric Chason, M. B. Sinclair, and Jerrold A. Floro, “Spontaneous pattern formation on ion bombarded Si(001)”, Physical Review Letters, 82(11), (1999) pp2330-2333.
26.R.M. Bradley, J.M.E. Harper, “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A, 6(1988) pp2390-2395.
27.G. I. Sivashinsky and D. M. Michelson, “On Irregular Wavy Flow of a Liquid Film Down a Vertical Plane”, Prog. Theor. Phys. 63 (1980) pp2112.
28.F. Katzenberg, R. Janlewing, J. Petermann, “Surface diffusion of metal atoms on polymer substrates during physical vapour deposition”, Colloid Polym Sci., 278 (2000) pp280-284.
29.Eric Chason, Michael J. Aziz, “Spontaneous formation of patterns on sputtered surfaces”, Scripta Materialia, 49 (2003) pp953-959.
30.Younan Xia and George M. Whitesides, “Soft lithography”, Annu. Rev. Mater. Sci., 28 (1998) pp153-184.
31.Hitachi E-1010濺鍍機使用手冊.
32.楊啟榮, “微機電製程領域之精密電鑄技術”.
33.羅吉宗, ”薄膜科技與應用”, 全華科技圖書股份有限公司, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top