|
伍、參考文獻 1.Gordon E. Moore, “Cramming more components onto integrated circuits”, Electronica, 38(8), (1965) pp114–117. 2.Stephen Chou, “NanoimprintLithography”, Technology Review, 106(1), (2003) pp42-44. 3.Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom , “Nanoimprint lithography”, J. Vac. Sci. Technol. B, 14(6), (1996) pp4129-4133. 4.M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi et al, “Step and Flash Imprint Lithography: A New Approach to High-Resolution Patterning”, Proc. SPIE Int. Soc. Opt. Eng. 3676, (1999) pp379-389. 5.Younan Xia and George M. Whitesides, “Soft Lithography”, Angew. Chem. Int. Ed., 37, (1998) pp550-575. 6.Stephen Y. Chou, Chris Keimel, Jian Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature, 417, (2002) pp835-837. 7.C.M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeno, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiesseic, G. Gruetzner, M.V. Maximov, B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach”, Mater. Sci. Eng. C, 23, (2003) pp23-31. 8.L. J. heyderman, B. Ketterer, D. Bachle, F. Glaus, B. Haas, H. Schift, K. Vogelsang, J. Gobrecht, L. tiefenauer, O. Dubochet, P. Surbled, and T. Hessler, “High volume fabrication of customised nanopore membrane chips”, Microelectron. Eng., 67-68, (2003) pp208-213. 9.T. I. Kamins, D. A. A. Ohiberg, R. Stanley Williams, W. Zhang, and S. Y. Chou, “Positioning of self-assembled, single-crystal, germanium islands by silicon nanoimprinting”, Appl. Phys. Lett., 74(12), (1999) pp1773-1775. 10.H. Cao, Z. Yu, J. Wang, J.O. Tegenfeldt, R. H. Austin, E. Chen, W. Wu, and S. Y. Chou, “Fabrication of 10 nm enclosed nanofluidic channels”, Appl. Phys. Lett., 81(1), (2002) pp174-176. 11.M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications”, J. Vac. Sci. technol. B, 21(2), (2003) pp660-663. 12.C.Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique”, J. Vac. Sci. technol. B, 20(6), (2002) pp2862-2866. 13.J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband waveguide polarizer with a double-layer 190nm period metal-gratings using nanoimprint lithography”, J. Vac. Sci. Technol. B, 17(6), (1999) pp2957-2960. 14.Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography”, Appl. Phys. Lett., 77(7), (2000) pp927-929. 15.I. Puscasu, G. Boreman, R. C. Tiberio, D. Spencer, and R. R. Krchnavek, “Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies”, J. Vac. Sci. Technol. B, 18(6), (2000) pp3578-3581. 16.E. Chen, H. Kostal, and Y. K. Park, “Manufacturing optical components on a nanoscale”, Lightwave, (2002 Oct.) pp52-58. 17.M. Li. J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20nm minimum feature size using nanoimprint lithography”, Appl. Phys. Lett., 76(6), (2000) pp673-675. 18.M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography”, Appl. Phys. Lett., 81(23), (2002) pp4431-4433. 19.C. Clavijo Cedeno, J. Seekamp, A. P. Kam, T. Hoffmann, S. Zankovych, C. M. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, and J. Ahopelto, “Nanoimprint lithography for organic electronics”, Microelectron. Eng., 61-62, (2002) pp25-31. 20.C. Pannemann, T. Diekmann, and U. Hilleringmann, “Nanometer scale organic thin film transistors with Pentacene”, Microelectron. Eng., 67-68, (2003) pp845-852. 21.T. Makela. T. Haatainen, J. Ahopelto, and H. Isotalo, “Imprinted electrically conductive patterns from a polyaniline blend”, J. Vac. Sci. technol. B, 19(2), (2001) pp487-489. 22.J. Wang, X. Sun, L. Chen, and S. Y. Chou, “Direct nanoimprint of submicron organic light-emitting structures”, Appl. Phys. Lett, 75(18), (1999) pp2767-2769. 23.C. Brown, “Nanoimprint method defines thin-film polymer lasers”, Electronic Engineering Times, (Jan. 11, 1999) p51. 24.Y. Chen, D. Macintyre, E. Boyd, D. Moran, I. Thayne, and S. Thorns, “Fabrication of high electron mobility transistors with T-gates by nanoimprint lithography”, J. Vac. Sci. Technol. B, 20(6), (2002) pp2887-2890. 25.Y. Chen, D. S. Macintyre, E. Boyd, D. Moran, I. Thayne, and S. Thorns, “High electron mobility transistors fabricated by nanoimprint lithography”, Microelectron. Eng., 67-68, (2003) pp189-195. 26.L. Guo, P. R. Krauss, and S. Y. Chou, “Nanoscale silicon field effect transistors fabricated using imprint lithography”, Appl. Phys. Lett., 71(13), (1997) pp1881-1883. 27.D. Moran, E. Boyd, H. McLelland, K. Elgaid, Y. Chen, D. S. Macintyre, S. Thorns, C. R. Stanley, and I. G. Thayne, “Novel technologies for the realisation of GaAs pHEMTs with 120nm self-aligned and nanoimprinted T-gates”, Microelectron. Eng., 67-68, (2003) pp769-774. 28.Z. Yu, S. J. Schablitsky, and S. Y. Chou, “Nanoscale GaAs metal–semiconductor–metal photodetectors fabricated using nanoimprint lithography”, Appl. Phys. Lett., 74(16), (1999) pp2381-2383. 29.A. Lebib, S. P. Li, M. Natali, and Y. Chen, “Size and thickness dependencies of magnetization reversal in Co dot arrays”, J. Appl. Phys., 89(7), (2001) pp3892-3896. 30.M. Natali, A. Lebib, E. Carnbril, and Y. Chen, “Nanoimprint lithography of high-density cobalt dot patterns for fine tuning of dipole interactions”, J. Vac. Sci. Technol. B, 19(6), (2001) pp2779-2783. 31.Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Carnbril, “Nanoimprint fabrication of micro-rings for magnetization reversal studies”, Microelectron. Eng., 57-58, (2001) pp405-410. 32.G. D. Bachand, R. K. Soong, H. P. Neves, A. OIkhovets, H. G. Craighead, and C. D. Monternagno, “Precision Attachment of Individual F1-ATPase Biomolecular Motors on Nanofabricated Substrates”, Nano Lett., 1(1), (2001) pp42-44. 33.G. M. McClelland, M. W. Hart, C. T. Rettner, M. E. best, K. R. Carter, and B. D. Terris, “Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold”, Appl. Phys. Lett., 81(8), (2002) pp1483-1485. 34.J. Moritz, B. Dieny, J. P. Nozieres, S. Landis, A. Lebib, and Y. Chen, “Domain structure in magnetic dots prepared by nanoimprint and e-beam lithography”, J. Appl. Phys., 91(10), (2002) pp7314-7316. 35.J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered magnetic nanostructures: fabrication and properties”, J. Magnetism and Magnetic Mater., 256, (2003) pp449-501. 36.S. Y. Chou, “Patterned Magnetic Nanostructures and Quantized Magnetic Disks”, Proceedings of the IEEE, 85(4), (1997) pp652-671. 37.L. Kong, L. Zhuang, and S. Y. Chou, “Writing and Reading 7.5Gbits/in2 Longitudinal Quantized Magnetic Disk Using Magnetic Force Microscope Tips”, IEEE Transactions on Magnetics, 33(5), (1997) pp3019-3021. 38.B. Cui, W. Wu, L. Kong, X. Sun, and S. Y. Chou, “Perpendicular quantized magnetic disks with 45 Gbits on a 4×4 cm2 area”, J. Appl. Phys., 85(8), (1999) pp5534-5536. 39.J. Moritz, S. Landis, J. C. Toussaint, P. Bayle-Guillemaud, B. Rodmacq, G. Casali, A. Lebib, Y. Chen, J. P. Nozieres, and B. Dieny, “Patterned Media Made From Pre-Etched Wafers: A Promising Route Toward Ultrahigh-Density Magnetic Recording”, IEEE Transactions on Magnetics, 38(4), (2002) pp1731-1736. 40.K. Naito, H. Hieda, M. Sakurai, Y. Kamata, and K. Asakawa, “2.5-Inch Disk Patterned Media Prepared by an Artificially Assisted Self-Assembling Method”, IEEE Transactions on Magnetics 38(5), (2002) pp1949-1951. 41.L. Kong, Q. Pan, B. Cui, M. Li, and S. Y. Chou, “Magnetotransport and domain structures in nanoscale NiFe/Cu/Co spin valve”, J. Appl. Phys., 85(8), (1999) pp5492-5494. 42.M. Austin and S. Y. Chou, “Fabrication of nanocontacts for molecular devices using nanoimprint lithography”, J. Vac. Sci. Technol. B, 20(2), (2002) pp665-667. 43.Y. Chen, D. A. A. Ohiberg, X. Li, D. R. Stewart, and R. Stanley Williams, “Nanoscale molecular-switch devices fabricated by imprint lithography”, Appl. Phys. Lett., 82(10), (2003) pp1610-1612. 44.I. Maximov, P. Carlberg, D. Wallin, I. Shorubaiko, W. Seifert, H. Q. Xu, L. Montelius. and L. Samuelson, “Nanoimprint lithography for fabrication of three-terminal ballistic junctions in InP/GaInAs”, Nanotechnology, 13, (2002) pp666-668. 45.I. Maximov, P. Carlberg, I. Shorubaiko, D. Wallin, E.-L. Sarwe, M. Beck, M. Graczyk, W. Seifert, H. Q. Xu, L. Montelius, and L. Samuelson, “Nanoimprint technology for fabrication of three-terminal ballistic junction devices in GaInAs/InP”, Microelectron. Eng. 67-68, (2003) pp196-202. 46.l. Martini, D. Eisert, M. Kamp, L. Worschech, A. Forchel, and J. Koeth, “Quantum point contacts fabricated by nanoimprint lithography”, Appl. Phys. Lett., 77(14), (2000) pp2237-2239. 47.l. Martini, S. Kuhn, M. Kamp, L. Worschech, A. Forchel, D. Eisert, J. Koeth, and R. Sijbesma, “Fabrication of quantum point contacts by imprint lithography and transport studies”, J. Vac. Sci. technol. B, 18(6), (2000) pp3561-3563. 48.l. Martini, M. Kamp, F. Fischer, L. Worschech, J. Koeth, and A. Forchel, “Fabrication of quantum point contacts and quantum dots by imprint lithography”, Microelectron. Eng., 57-58, (2001) pp397-403. 49.S. Zankovych, I. Maximov, I. Shorubaiko, J. Seekamp, M. Beck, S. Romanov, D. Reuter, P. Schafmeister, A. D. Wieck, J. Ahopelto, C. M. Sotomayor Torres, and L. Montelius, “N anoimprint-induced effects on electrical and optical properties of quantum well structures”, Microelectron. Eng., 67-68, (2003) pp214-220. 50.P. R. Krauss and S. Y. Chou, “”Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probeAppl. Phys. Lett., 71(21), (1997) pp3174-3176. 51.A. Pepin, P. Youinou, V. Studer, A. Lebib, and Y. Chen, “Nanoimprint lithography for the fabrication of DNA electrophoresis chips”, Microelectron. Eng., 61-62, (2002) pp927-932. 52.George M. Whitesides and Paul E. Laibinis, “Wet Chemical Approaches to the Characterization of Organic Surfaces: Self- Assembled Monolayers, Wetting, and the Physical-Organic Chemistry of the Solid-Liquid Interface”, Langmuir, 6, (1990) pp87-96. 53.Li M. T., PhD Thesis Princeton University, Princeton (2003). 54.Taniguchi J, Tokano Y, Miyamoto I, Komuro M and Hiroshima H, “Diamond nanoimprint lithography”, Nanotechnology, 13, (2002) pp592-596. 55.Pang S. W., Tamamura T, Nakao M, Ozawa A and Masuda H, “Direct nano-printing on Al substrate using a SiC mold”, J. Vac. Sci. Technol. B, 16(3), (1998) pp1145-1149. 56.M.M. Alkaisi, R.J. Blaikie, S.J. McNab, “Low temperature nanoimprint lithography using silicon nitride molds”, Microelectron. Eng., 57–58, (2001) pp367–373. 57.T.C. Bailey , D.J. Resnick , D. Mancini , K.J. Nordquist , W.J. Dauksher et al, “Template fabrication schemes for step and flash imprintlithography”, Microelectron. Eng., 61–62, (2002) pp461–467. 58.Qiangfei Xia, Chris Keimel, Haixiong Ge, Zhaoning Yu, Wei Wu, and Stephen Y. Chou, “Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography”, Applied Physics Letters, 83(21), (2003) pp4417-4419. 59.X. Liu, D. Du, and G. Mourou, “Laser Ablation and Micromachining with Ultrashort Laser Pulses”, IEEE Journal of Quantum Electronics, 33(10), (1997) pp1706-1716. 60.D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., 56(3), (1985) pp219–221. 61.W. S. Pelouch, P. E. Powers, and C. L. Tang, “Self-starting mode-locked ring-cavity Ti:sapphire laser”, Opt. Lett., 17(22), (1992) pp1581-1583. 62.L. Xu, C. Spielmann, F. Krausz, and R. Szipöcs, “Ultrabroadband ring oscillator for sub-10-fs pulse generation”, Opt. Lett., 21(16), (1996) pp1259-1261. 63.D. E. Spence, P. N. Kean, and W. Sibbet, “60-fsec pulse generation from a self-mode-locked Ti:Sapphire laser,” Opt. Lett., 16(1), (1991) pp42–44. 64.朱旭新、陳聿昕、汪治平、李超煌及陳賜原,十兆瓦超短脈衝雷射系統,科儀新知128期,(2002) 5-18頁. 65.R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett., 9(5), (1984) pp150–152. 66.P. S. Banks, M. D. Perry, V. Yanovsky, S. N. Fochs, B. C. Stuart, and J. Zweiback, “Novel All-Reflective Stretcher for Chirped-Pulse Amplification of Ultrashort Pulses”, IEEE Journal of Quantum Electronics, 36(3), (2000) pp268-274. 67.Jeff Squier, Frangois Salin, and Gerard Mourou, “100-fs pulse generation and amplification in Ti:A1203”, Opt. Lett., 16(5), (1991) pp324-326. 68.E. B. Treacy, “Optical Pulse Compression with Diffraction Gratings”, IEEE J. Quantum Electron., QE-5(9), (1969) pp454-458. 69.Richard A. Baumgartner and Robert K. Byer, “Optical Parametric Amplifier”, IEEE J. Quantum Electronics., QE-15(6), (1979) pp432-444. 70.Gábor Kurdi, Károly Osvay, Márta Csatári, Ian N. Ross, and József Klebniczki, “Optical Parametric Amplification of Femtosecond Ultraviolet Laser Pulses”, IEEE J. Quantum Electronics., 10(6), (2004) pp1259-1267. 71.M. Dantus, MJ Rosker and AH Zewail, “Real Time Femtosecond Probing of Transition States in Chemical Reactions”, J. Chem. Phys., 87(4), (1987) pp2395-2397. 72.J.K. Ranka, R.S. Windeler and A.J. Stenz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm”, Opt. Lett, 25(1), (2000) pp25-27. 73.D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis”, Science, 288, (2000) pp635-639. 74.M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, and E. Mazur, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask”, Applied Physics Letters, 82(11), (2003) pp1715-1717. 75.Frank Korte, Jürgen Koch, Carsten Fallnich, Andreas Ostendorf, and Boris N. Chichkov, “Towards nanostructuring with femtosecond laser pulses”, Proc. SPIE Int. Soc. Opt. Eng., 5118, (2003) pp93-100. 76.Ming Li, Kiyotaka Mori, Makoto Ishizuka, and Xinbing Liu, “Photonic bandpass filter for 1550 nm fabricated by femtosecond direct laser ablation”, Applied Physics Letters, 82(2), (2003) pp216-218. 77.N. Kh. Abrikosov and G. T. Danilova-Dobryakova, Izv. Akad. Auk., “”, SSSR Neorg. Mater., 1, (1965) p204. 78.K. A. Agaev and A. G. Talybov, “”, Sov. Phys. Cryst., 11, p400 (1966). 79.I I Petrov, R. M. Imamovet, and Z. G. Pinsker, “Electron-Diffraction Determination of the Strictures of Ge2Sb2Te5 and GeSb4Te7”, Sov. Phys. Cryst. 13(3), (1968) pp339-342. 80.Noboru Yamada, Eiji Ohno, Kenichi Nishiuchi, and Nobuo Akahira, “Rapid-phase transitions of GeTe-Sb2Te3, pseudobinary amorphous thin films for an optical disk memory”, J. Appt. Phys., 69(5), (1991) pp2849-2856. 81.Toshihisa Nonaka, Gentaro Ohbayashi, Yoshiharu Toriumi, Yuji Mori, Hideki Hashimoto, “Crystal structure of GeTe and Ge2-Sb2-Te5 meta-stable phase”, Thin Solid Films, 370, (2000) pp258-261. 82.Y. H. Chen, S. C. Tam, W. L. Chen and H. Y. Zheng, “Application of Taguchi Method in the Optimization of Laser Micro-engraving of Photomasks”, Reprinted from International Journal of Materials & Product Technology, 11, (1996) pp333-344. 83.Terence C.L. Wee, Boon Siew Ooi, Yan Zhou, Yuen Chuen Chan, and Yee Loy Lam, “Characterization of Reactive Ion Etching of Sol-Gel SiO2 Using Taguchi Optimization Method”, Proc. SPIE Int. Soc. Opt. Eng., 3896, (1999) pp438-444. 84.Jiunn-jye Tsaur, Chen-Hsun Du, Chengkuo Lee, “Investigation of TMAH for front-side bulk micromachining process from manufacturing aspect”, Sensors and Actuators A, 92, (2001) pp375-383. 85.Isamu Namose, “Optimization of gas utilization in plasma processes”, IEEE Transactions on Semiconductor Manufacturing, 16(3), (2003) pp429-435. 86.Tsunami user’s manual, Spectra-Physics. 87.Spitfire user’s manual, Spectra-Physics. 88.TOPAS user’s manual, Light Conversion 89.NANOTM, Negative Tone Photoresist Formulations 2002-2025, MicroChem. 90.H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis”, Anal. Chem. 29(11), (1957) pp1702-1706. 91.M. Avrami, “Kinetics of phase change. I. General theory”, J. Chem. Phys. 7, (1939) pp1103-1112. 92.Noboru Yamada and Toshiyuki Matsunaga, “Structure of laser-crystallized Ge2Sb2+xTe5 puttered thin films for use in optical memory”, Journal of Applied Physics, 88(12), (2000) pp7020-7028. 93.Zhaohui Fan, Lisha Wang, David E. Laughlin, “Modeling of Crystallization Activation Energy for GeTe-Sb2Te3 Based Phase Change Materials”, Proc. SPIE Int. Soc. Opt. Eng., 5380, (2004) pp493-500. 94.V. Weidenhof, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films”,Journal of Applied Physics, 88(2),(2000) pp657-664. 95.Friedrich Dausinger, Helmut HUgel, Vitali Konov, “Micro-machining with ultrashort laser pulses:From basic understanding to technical applications”, Proc. SPIE Int. Soc. Opt. Eng., 5147, (2003) pp106-115. 96.G.F. Zhou, H.J. Borg, J.C.N. Rijpers, M.H.R. Lankhorst and J.J.L. Horikx, “Crystallisation behaviour of phase change materials: Comparison between nucleation- and growth-dominated crystallization”, Proceedings of SPIE, 4090, (2000) pp108-115. 97.Z. Guosheng, P.M. Fauchet, A.E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination”, Phys. Rev. B, 26(10), (1982) pp5366-5382. 98.W. Kautek, P. Rudolph, G. Daminelli, A. Hertwig, S. Martin, J. Bonse, J. Krüger, “Ultrashort Pulse Lasers - New Aspects of Materials Interaction”, Proc. SPIE Int. Soc. Opt. Eng., 5448, (2004) pp213-224. 99.R.S. Longhurst: Geometrical and Physical Optics (1964).
|