跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉桂枝
研究生(外文):Kuei-Chih Yeh
論文名稱:Porphyromonasgingivalis脂多醣對停經後骨質疏鬆症之鼠科動物模式血清中OPG/RANKL、Interleukin-6調節之影響
論文名稱(外文):Effect of Porphyromonas gingivalis lipopolysaccharide on theregulation of OPG/RANKL and Interleukin-6 in the serum ofsimulating murine model of postmenopausal osteoporosis
指導教授:呂炫堃呂炫堃引用關係
指導教授(外文):Hsein-Kun Lu
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:牙醫學系
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:71
中文關鍵詞:停經後骨質疏鬆症osteoprotegerinRANKLInterleukin-6tartrate-resistant acid phosphatase
外文關鍵詞:postmenopausal osteoporosisosteoprotegerinRANKLInterleukin-6tartrate-resistant acid phosphatase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
牙周炎是一種慢性發炎的疾病,會導致牙齒的支持組織受到破壞,進而造成牙齒的喪失,而齒槽骨吸收是一項牙周炎的重要病徵。目前已知Porphyromonas gingivalis (P. gingivalis) 是牙周炎的致病菌種之一,而且在動物實驗中可以造成骨吸收。根據相關研究顯示,目前對骨質疏鬆症與牙周炎之關連性仍有爭議。因此本研究的目的在於研究罹患停經後骨質疏鬆症之動物模型受P. gingivalis之脂多醣 (lipopolysaccharide,P. gingivalis LPS) 侵襲後,其血清中與骨表現有關的osteoprotegerin (OPG)、receptor activator of nuclear factor ĸB ligand (RANKL)、Interleukin-6 (IL-6) 的濃度變化,並以注入Escherichia coli的LPS (E. coli LPS) 作為對照。
實驗是選擇90隻10週大的ICR雌性小白鼠 (由國立台灣大學醫學院實驗動物中心提供),45隻切除卵巢的老鼠作為實驗組,45隻假性切除卵巢的老鼠作為對照組。手術4週後從眼窩抽血離心取得血清以作為分析IL-6、OPG及RANKL的基準點。分別將100 µg的P. gingivalis LPS、E. coli LPS注入兩組老鼠 (每組各30隻) 的腹膜腔,1小時、3小時、6小時、24小時、48小時後抽血,比較各時間點與注射前OPG、RANKL、OPG/RANKL ratio、IL-6的差異。並在48小時後犧牲動物,取下右側股骨作tartrate-resistant acid phosphatase (TRAP) 染色。剩下各15隻的實驗組及對照組老鼠在手術後4週犧牲,取下右側股骨作TRAP染色的對照。OPG、RANKL、IL-6的濃度測定是以螢光免疫分析法 (enzyme linked immunosorbent assay,ELISA) 檢測。以 Wilcoxon signed rank test檢驗各組組內注入脂多醣後1、3、6、24、48小時與未注入脂多醣前血清中的OPG、RANKL、OPG/RANKL ratio、IL-6是否有差異,Mann-Whitney U test分別檢定實驗組與對照組注射P. gingivalis LPS、E. coli LPS後血清中的OPG、RANKL、OPG/RANKL ratio、IL-6有無差異,以Spearman rank correlation coefficients檢定各組在各個時間點的IL-6與OPG、RANKL、OPG/RANKL ratio間的相關性。以Kruskal-Wallis test檢定各組股骨骨髓中TRAP染色呈陽性的細胞數是否有差異。於本實驗設定p < 0.05有統計學上之差異。
實驗組及對照組在P. gingivalis LPS的刺激下,代表噬骨細胞生成 (osteoclastogenesis) 的OPG/RANKL ratio在注入後3小時會先下降 (p< 0.05),之後呈現上升的趨勢。實驗組及對照組在注入P. gingivalis LPS後1、3小時,血清中IL-6的濃度比注入前高 (p< 0.05)。而不論是實驗組或是對照組,注入E. coli LPS後,血清中的OPG、RANKL、OPG/RANKL ratio的變化比注入P. gingivalis LPS大,而IL-6除了濃度更高之外,作用時間也比較久。各組的IL-6表現和OPG、RANKL、OPG/RANKL ratio沒有相關。而在TRAP染色方面,實驗組老鼠會比對照組有較多的TRAP染色呈陽性的細胞數目 (p< 0.05),而注入脂多醣並不影響細胞的數目。
在切除卵巢的老鼠腹膜腔內只注入一次脂多醣的本實驗中,我們觀察到代表噬骨細胞生成的OPG/RANKL系統在P. gingivalis LPS的刺激下,除了受到P. gingivalis LPS的影響之外,應該還有其他的因子會共同調控OPG、RANKL的表現。IL-6的表現是直接受到P. gingivalis LPS的影響,血清中的濃度會先上升,之後回到正常的範圍,而不論有無切除卵巢都不影響IL-6的表現,並且IL-6的表現和OPG、RANKL、OPG/RANKL ratio沒有相關性。此外,我們也發現對血清中的OPG、RANKL、OPG/RANKL ratio、IL-6變化,E. coli LPS的效能比P. gingivalis LPS強。
Periodontitis is a chronic inflammatory disease which results in the breakdown of tooth supporting structures, especially alveolar bone destruction. Deep periodontal pocket, attachment level loss, and alveolar bone loss are found under clinical examination. Porphyromonas gingivalis (P. gingivalis), a black-pigmented gram-negative anaerobic bacterial rods, is a vital pathogen for adult periodontitis. P. gingivalis has been proved to contribute to bone resorption in many vivo studies. However, unlike the clear relationship between osteoporosis and tooth loss, controversy still exists concerning the association between osteopenia/opteoporosis and the periodontal pathogen. The purpose of the present study is to clarify the etiologic relationship of P. gingivalis lipopolysaccharide (P. gingivalis LPS) and the expression of OPG, RANKL, IL-6 in the serum of postmenopausal osteoporosis mice. Injection of Escherichia coli LPS (E. coli LPS) was need as the control.
Ninty 10-week old ICR female mice were divided into ovariectomized group (experimental group) and sham-operation group (control group). After operation 4 weeks, we collect the serum as baseline. 100 µg P. gingivalis LPS and E. coli LPS were separately injected into the peritoneum of experimental group (30 mice) and control group (30 mice). Subsequently, we collected the serum 1,3,6,24 and 48 hours after the injection of both LPS. Then the concentrations of IL-6, OPG and RANKL of serum will be estimated by using sandwich ELISA. The femur bone was dissected for TRAP stain analysis. Besides, 4 weeks after operation, 15 experimental mice and 15 control mice was sacrificed for TRAP stain to compare lipopolysaccharide effect. Mann-Whitney U test was applied to study the difference of OPG, RANKL, OPG/RANKL ratio, IL-6 between P. gingivalis LPS and E. coli LPS. Wilcoxon signed rank test was used to study the difference of OPG, RANKL, OPG/RANKL ratio, IL-6 between each time interval and baseline in group. The strength of correlations between IL-6 and OPG, RANKL, OPG/RANKL ratio at each time interval in group were determined by Spearman rank correlation coefficients. The difference of TRAP positive cell count in the specimen among was compared by using Kruskal-Wallis test. Results with p< 0.05 were defined statistically different.
In the injection of P. gingivalis LPS of experimental and control group, OPG/RANKL ratio decreased at 3 hours (p< 0.05), then trended to rising tendency. IL-6 rose at 1、3 hours (p< 0.05). Besides, the changes of OPG, RANKL, OPG/RANKL ratio, IL-6 were greater in injection of E. coli LPS than P. gingivalis LPS. There is stronger TRAP positive cells distribution in experimental group than control group (p< 0.05). No matter single booster of P. gingivalis LPS or E. coli LPS did not effect the expression of TRAP positive cells.
It should be noticed that only single shot of bacterial LPS was applied in this animal model. P. gingivalis LPS directly effected the expression of IL-6, but not OPG/RANKL system. It indicated that OPG/RANKL ratio of experimental group injected with P. gingivalis LPS might also be regulated by a more complex system. Removal of ovary did not effect the expression of IL-6; our data also indicated there were no correlation of IL-6, expression of OPG, RANKL, and OPG/RANKL ratio. In addition, the stimulatory effect of E. coli LPS was stronger than P. gingivalis LPS.
目 錄
目錄----------------------------------------------------------I
圖目錄------------------------------------------------------------------------------------II
表目錄-----------------------------------------------------------------------------------III
中文摘要--------------------------------------------------------------------------------IV
Abstract--------------------------------------------------------------------------------VII


第一章 緒論
第一節 骨質疏鬆症--------------------------------------------------------------1
第二節 研究目的-----------------------------------------------------------------5
第二章 文獻查證
第一節 OPG/RANKL 系統---------------------------------------------------7
第二節 Interleukin-6 (IL-6)--------------------------------------------------10
第三節 Tartrate-resistant acid phosphatase (TRAP)-------------------11
第三章 研究材料與方法
第一節 停經後骨質疏鬆症動物模型及分組-------------------------------12
第二節 研究方法----------------------------------------------------------------13
第三章 實驗結果
第一節 存活率--------------------------------------------19
第二節 切除卵巢對OPG、RANKL、OPG/RANKL ratio
及 IL-6的影響--------------------------------------------------------20
第三節 P. gingivalis LPS、E. coli LPS對OPG、RANKL
、OPG/RANKL ratio及 IL-6的影響------------------------------21
第四節 組織切片-TRAP染色------------------------------------------------26
第五章 討論
第一節 切卵巢手術對老鼠的影響-------------------------------------------27
第二節 注射P. gingivalis LPS、E. coli LPS 對切除卵巢老鼠
、假性切除卵巢的老鼠的影響--------------------------------------29
第六章 結論----------------------------------------------------------------------------34

參考文獻--------------------------------------------------------------------------------35
圖目錄
圖1. 實驗組及對照組手術後4週的OPG值-------------------------------------43
圖2. 實驗組及對照組手術後4週的RANKL值-------------------------------43
圖3. 實驗組及對照組手術後4週的OPG/RANKL ratio值-----------------44
圖4. 實驗組及對照組手術後4週的IL-6值------------------------------------44
圖5. 實驗組及對照組老鼠注入P. gingivalis LPS的OPG值變化---------45
圖6. 實驗組及對照組老鼠注入E. coli LPS的OPG值變化-----------------46
圖7. 實驗組及對照組老鼠注入P. gingivalis LPS
的RANKL值變化-------------------------------------------------------------47
圖8. 實驗組及對照組老鼠注入E. coli LPS的RANKL值變化-------------48
圖9. 實驗組及對照組老鼠注入P. gingivalis LPS
的OPG/RANKL ratio值變化-----------------------------------------------49
圖10. 實驗組及對照組老鼠注入E. coli LPS
的OPG/RANKL ratio 值變化---------------------------------------------50
圖11. 實驗組及對照組老鼠注入P. gingivalis LPS的IL-6值變化----------51
圖12. 實驗組及對照組老鼠注入E. coli LPS的IL-6值變化----------------52
圖13. 實驗組老鼠注入P. gingivalis LPS、E. coli LPS
的OPG值比較----------------------------------------------------------------53
圖14. 對照組老鼠注入P. gingivalis LPS、E. coli LPS
的OPG值比較----------------------------------------------------------------54
圖15. 實驗組老鼠注入P. gingivalis LPS、E. coli LPS
的RANKL值比較------------------------------------------------------------55
圖16. 對照組老鼠注入P. gingivalis LPS、E. coli LPS
的RANKL值比較------------------------------------------------------------56
圖17. 實驗組老鼠注入P. gingivalis LPS、E. coli LPS
的OPG/RANKL ratio值比較----------------------------------------------57
圖18. 對照組老鼠注入P. gingivalis LPS、E. coli LPS
的OPG/RANKL ratio值比較----------------------------------------------58
圖19. 實驗組老鼠注入P. gingivalis LPS、E. coli LPS
的IL-6值比較-----------------------------------------------------------------59
圖20. 對照組老鼠注入P. gingivalis LPS、E. coli LPS
的IL-6值比較-----------------------------------------------------------------60
圖21. 實驗組老鼠注入P. gingivalis LPS的TRAP染色----------------------61
圖22. 對照組老鼠注入P. gingivalis LPS的TRAP染色----------------------62
圖23. 實驗組老鼠注入E. coli LPS的TRAP染色------------------------------63
圖24. 對照組老鼠注入E. coli LPS的TRAP染色------------------------------64
圖25. 實驗組老鼠切除卵巢後4週的TRAP染色------------------------------65
圖26. 對照組老鼠假性切除卵巢後4週的TRAP染色-------------------------66
圖27. 實驗組老鼠注入P. gingivalis LPS、E. coli LPS
的TRAP陽性細胞數量-----------------------------------------------------67


表目錄
表1. 實驗組老鼠注入P. gingivalis LPS在各個時間點時IL-6
與OPG RANKL、OPG/RANKL ratio的相關性------------------------68
表2. 對照組老鼠注入P. gingivalis LPS在各個時間點時IL-6
與OPG、RANKL、OPG/RANKL ratio的相關性---------------------69
表3. 實驗組老鼠注入E. coli LPS在各個時間點時IL-6
與OPG、RANKL、OPG/RANKL ratio的相關性---------------------70
表4. 對照組老鼠注入E. coli LPS在各個時間點時IL-6
與OPG、RANKL、OPG/RANKL ratio的相關性---------------------71
1.WHO. Assessment of fracture risk and its applications to screening for postmenopausal osteoporosis. WHO Technical Report Series. Geneva: WHO,1994.
2.Riggs BL. Overview of osteoporosis. Western Journal of Medicine 1991;154:63-77.
3.Anonymous. Consensus conference: Osteoporosis. Journal of the American Medical Association 1984;252:799-802.
4.Looker AC, Orwoll ES, Johnston CC Jr, Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP. Prevalence of low femoral bone density in older U.S. adults from NHANES III. Journal of Bone & Mineral Research 1997;12:1761-1768.
5.Wasnich R. Bone mass measurement: prediction of risk. American Journal of Medicine 1993;95(suppl.5A):6-10.
6.Kanis JA. Osteoporosis. Oxford: Blackwell Science Ltd, 1994 pp.148-167.
7.Spelsberg TC, Subramaniam M, Riggs BL, Khosla S. The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Molecular Endocrinology 1999;13:819-828.
8.Dempster DW, Lindsay R. Pathogenesis of osteoporosis. Lancet 1993; 341:797-801.
9.Nordin BE, Need AG, Morris HA, Horowitz M, Robertson WG. Evidence for a renal calcium leak in postmenopausal women. Journal of Clinical Endocrinology & Metabolism 1991;72:401-407.
10.Groen JJ, Menczel J, Shapiro S. Chronic destructive periodontal disease in patients with presenile osteoporosis. Journal of Periodontology 1968;39:19-23.
11.Krall EA, Dawson-Hughes B, Papas A, Garcia RI. Tooth loss and skeletal bone density in healthy postmenopausal women. Osteoporosis International 1994;4:104-109.
12.Krall EA, Garcia RI, Dawson-Hughes B. Increased risk of tooth loss is related to bone loss at the whole body, hip, and spine. Calcified Tissue International 1996;59:433-437.
13.Taguchi A, Suei Y, Ohtsuka M, Otani K, Tanimoto K, Hollender LG. Relationship between bone mineral density and tooth loss in elderly Japanese Women. Dento-Maxillo-Facial Radiology 1999;28:219-223.
14.Grossi SG, Jeffcoat MK, Genco RJ. Osteopenia, osteoporosis and oral disease. In: Periodontal medicine. Rose LF, Genco RJ, Cohen DW, Mealey BL, editors. St. Louis:B.C. Decker Inc., pp.167-182.
15.von Wowern N, Klausen B, Kollerup G. Osteoporosis: a risk factor in podontal disease. Journal of Periodontology 1994;65:1134-1138.
16.Streckfus CF, Johnson RB, Nick T, Tsao A, Tucci M. Comparison of alveolar bone loss, alveolar bone density and second metacarpal bone density, salivary and gingival crevicular fluid interleukin-6 concentrations in healthy premenopausal and post-menopausal women on estrogen therapy. Journals of Gerontology Series A-Biological Sciences & Medical Sciences 1997;52:M343-351.
17.Ronderos M, Jacobs DR, Himes JH, Pihlstrom BL. Associations of periodontal disease with femoral bone mineral density and estrogen replacement therapy: cross-sectional evaluation of US adults from NHANES III. Journal of Clinical Periodontology 2000;27:778-786.
18.Tezal M, Wactawski-Wende J,Grossi SG, Ho AW, Dunford R, Genco RJ. The relationship between bone mineral density and periodontitis in postmenopausal women. Journal of Periodontology 2000; 71:1492-1498.
19.Elders PJ, Habets LL, Netelenbos JC, van der Linden LW, van der Stelt PF. The relation between periodontitis and systemic bone mass in women between 46 and 55 years of ages. Journal of Clinical Periodontology 1992;19:492-496.
20.Weyant RJ, Pearlstein ME, Churak AP, Forrest K, Famili P, Cauley JA. The association between osteopenia and periodontal attachment loss in older women. Journal of Periodontology 1999;70:982-991.
21.Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Boyle WJ, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89: 309-319.
22.Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K. Identity of osteoclastogenesis inhibitory factor(OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998;139:1329-1337.
23.Yamaguchi K, Kinosaki M, Goto M, Kobayashi F, Tsuda E, Morinaga T, Higashio K. Characterization of structural domains of human osteoclastogenesis inhibitory factor. Journal of Biological Chemistry 1998;273:5117-5123.
24.Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes & Development 1998;12:1260-1268.
25.Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochemical & Biophysical Research Communications 1998;247:610-615.
26.Malyankar UM, Scatena M, Suchland KL, Yun TJ, Clark EA, Giachelli CM. Osteoprotegerin is an αv β3-induced, NF-κB-dependent survival factor for endothelial cells. Journal of Biological Chemistry 2000;275:20959-20962.
27.Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, Higashio K. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochemical & Biophysical Research Communications 1997;234:137-142.
28.Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin(OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165-176.
29.Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation Factor is a ligand for osteoprotegerin/osteoclastogenesis- inhibitory factor and is identical to TRANCE/RANKL. Proceedings of the National Academy of Sciences of the United States of America 1998;95:3597-3602.
30.Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS 3rd, Frankel WN, Lee SY, Choi Y. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-jun N-terminal kinase in T cells. Journal of Biological Chemistry 1997;272:25190-25194.
31.Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997;390:175-179.
32.Fuller K, Wong B, Fox S, Choi Y, Chambers TJ. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. Journal of Experimental Medicine 1998;188:997-1001.
33.Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proceedings of the National Academy of Sciences of the United States of America 2000;97:1566-1571.
34.Teitelbaum SL. Bone resorption by osteoclasts. Science 2000;289:1504-1508.
35.Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R. Estrogen deficiency induce bone loss by enhancing T cell production of TNF-α. Journal of Clinical Investigation 2000;106:1229-1237.
36.Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999;140:4367-4370.
37.Fridman WH, Michon J. Pathophysiology of cytokines. Leukemia Research 1990;14:675-677.
38.Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T. et al. IL-6 is produced by osteoblasts and induces bone resorption. Journal of Immunology 1990;145:3297-3303.
39.Littlewood AJ, Russell J, Harvey GR, Hughes DE, Russell RG, Gowen M. The modulation of the expression of IL-6 and its receptor in human osteoblasts in vitro. Endocrinology 1991;129:1513-1520.
40.Black K, Garrett IR, Mundy GR. Chinese hamster ovarian cells transfected with the murine interleukin-6 gene cause hypercalcemia as well as cachexia, leukocytosis and thrombocytosis in tumor-bearing nude mice. Endocrinology 1991;128:2657-2659.
41.Roodman GD. Interleukin-6: An osteotropic factor? Journal of Bone & Mineral Research 1992;7:475-478.
42.Manolagas SC. Role of cytokines in bone resorption. Bone 1995;17(Suppl.):63S-67S.
43.Kono Y, Beagley KW, Fujihashi K, McGhee JR, Taga T, Hirano T, Kishimoto T, Kiyono H. Cytokine regulation of localized inflammation. Induction of activated B cells and IL-6-mediated polyclonal IgG and IgA synthesis in inflamed human gingiva. Journal of Immunology 1991;146:1812-1821.
44.Matsuki Y. Yamamoto T. Hara K. Detection of inflammatory cytokine messenger RNA (mRNA)-expressing cells in human inflamed gingiva by combined in situ hybridization and immunohistochemistry. Immunology1992;76:42-47, 1992.
45.Shih-Jung Lin, Yung-Li Chen, Mark Yen-Bin Kuo, Chuan-Li Li, Hsein-Kun Lu. Measurement of gp130 cytokines – Oncostatin M and IL-6 in gingival crevicular fluid of patients with chronic periodontitis. Cytokine 2005;30:160-167.
46.Hayman AR, Cox TM. Purple acid phosphatase of the human macrophage and osteoclast. Characterization, molecular properties, and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells. Journal of Biological Chemistry 1994;269:1294-1300.
47.Chen J, Yam LT, Janckila AJ, Li CY, Lam WK. Significance of “high” acid phosphatase activity in the serum of normal children. Clinical Chemistry 1979;25:719-722.
48.Lam KW, Lee P, Li CY, Yam LT. Immunological and biochemical evidence for identity of tartrate-resistant isoenzymes of acid phosphatases from human serum and tissues. Clinical Chemistry 1980;26:420-422.
49.Lau KH, Onishi T, Wergedal JE, Singer FR, Baylink DJ. Characterization and assay of tartrate-resistant acid phosphatase activity in serum: potential use to assess bone resorption. Clinical Chemistry 1987;33:458-462.
50.Chamberlain P, Compston J, Cox TM, Hayman AR, Imrie RC, Reynolds K, Holmes SD. Generation and characterization of monoclonal antibodies to human type-5 tartrate-resistant acid phosphatase: development of a specific immunoassay of the isoenzyme in serum. Clinical Chemistry 1995;41:1495-1499.
51.van de Wijngaert FP, Burger EH. Demonstration of tartrate-resistant acid phosphatase in un-decalcified, glycolmethacrylate-embedded mouse bone: a possible marker for (pre)osteoclast identification. Journal of Histochemistry & Cytochemistry 1986;34:1317-1323.
52.Cerri PS, Boabaid F, Katchburian E. Combined TUNEL and TRAP methods suggest that apoptotic bone cells are inside vacuoles of alveolar bone osteoclasts in young rats. Journal of Periodontal Research 2003;38:223-226.
53.Sakai A, Nishida S, Okimoto N, Okazaki Y, Hirano T, Norimura T, Suda T, Nakamura T. Bone marrow cell development and trabecular bone dynamics after ovariectomy in ddy mice. Bone 1998;23:443-451.
54.Kostenuik PJ, Bolon B, Morony S, Daris M, Geng Z,Carter C, Sheng J. Gene therapy with human recombinant osteoprotegerin reverses established osteopenia in ovariectomized mice. Bone 2004;34:656-664.
55.Chaudhary LR, Spelsberg TC, Riggs BL. Production of various cytokines by normal human osteoblast-like cells in response to interleukin-1 beta and tumor necrosis factor-alpha: lack of regulation by 17 beta-estradiol. Endocrinology 1992;130:2528-2534.
56.Vargas SJ, Naprta A, Lee SK, Kalinowski J, Kawaguchi H, Pilbeam CC, Raisz LG, Lorenzo JA. Lack of evidence for an increase in interleukin-6 expression in adult murine bone, bone marrow, and marrow stromal cell cultures after ovariectomy. Journal of Bone & Mineral Research 1996;11:1926-1934.
57.Kobayashi-Sakamoto M, Hirose K, Isogai E, Chiba I. NF-kappaB-dependent induction of osteoprotegerin by Porphyromonas gingivalis in endothelial cells. Biochemical & Biophysical Research Communications 2004;315:107-112.
58.Wada N, Maeda H, Yoshimine Y, Akamine A. Lipopolysaccharide stimulates expression of osteoprotegerin and receptor activator of NF-kappa B ligand in periodontal ligament fibroblasts through the induction of interleukin-1 beta and tumor necrosis factor-alpha. Bone 2004;35:629-635.
59.Miyauchi M, Sato S, Kitagawa S, Hiraoka M, Kudo Y, Ogawa I, Zhao M, Takata T. Cytokine expression in rat molar gingival periodontal tissues after topical application of lipopolysaccharide. Histochemistry & Cell Biology 2001;116:57-62.
60.McFarlane CG, Reynolds JJ, Meikle MC. The release of interleukin-1 beta, tumor necrosis factor-alpha and interferon-gamma by cultured peripheral blood mononuclear cells from patients with periodontitis. Journal of Periodontal Research 1990;25:207-214.
61.Teng YT, Nguyen H, Gao X, Kong YY, Gorczynski RM, Singh B, Ellen RP, Penninger JM. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. Journal of Clinical Investigation 2000;106:R59-67.
62.Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999;25:255-259.
63.Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 2003;32:1-7.
64.Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti N, Gouin F, Redini F, Heymann D. Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. American Journal of Pathology 2003;163:2021-2031.
65.Joiner KA, McAdam KP, Kasper DL. Lipopolysaccharides from Bacteroides fragilis are mitogenic for spleen cells from endotoxin responder and nonresponder mice. Infection & Immunity 1982;36:1139-1145.
66.Weintraub A, Zahringer U, Wollenweber HW, Seydel U, Rietschel ET. Structural characterization of the lipid A component of Bacteroides fragilis strain NCTC 9343 lipopolysaccharide. European Journal of Biochemistry 1989;183:425-31.
67.Ogawa T. Chemical structure of lipid A from Porphyromonas (Bacteroides) gingivalis lipopolysaccharide. FEBS Letters 1993;332:197-201.
68.Ogawa T. Immunobiological properties of chemically defined lipid A from lipopolysaccharide of Porphyromonas (Bacteroides) gingivalis. European Journal of Biochemistry 1994;219:737-742.
69.Wactawski-Wende J, Grossi SG, Trevisan M, Genco RJ, Tezal M, Dunford RG, Ho AW, Hausmann E, Hreshchyshyn MM. The role of osteopenia in oral bone loss and periodontal disease. Journal of Periodontology 1996;67:1076-1084.
70.Payne JB, Reinhardt RA, Nummikoski PV, Dunning DG, Patil KD. The association of cigarette smoking with alveolar bone loss in postmenopausal females. Journal of Clinical Periodontology 2000; 27:658-664.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top