(3.239.192.241) 您好!臺灣時間:2021/03/02 12:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馮偉雄
研究生(外文):Vai-Hong Fong
論文名稱:Rotenone對老鼠行為及黑核多巴胺神經元影響之評估
論文名稱(外文):Behavioral Assessment and Immunohistochemical Evaluation of the SNpc in Rats Following Rotenone Treatment
指導教授:楊良友楊良友引用關係
指導教授(外文):Liang-Yo Yang
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:63
中文關鍵詞:神經毒物行為評估黑核多巴胺神經元巴金森病
外文關鍵詞:neurotoxinrotenonebahavior assessementParkinson''s diseasesubstantia nigradopaminergic neuron
相關次數:
  • 被引用被引用:0
  • 點閱點閱:363
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
文獻報告指出巴金森氏病罹病率在超過65歲的人口為1-3%, 佔人類神經退化性疾病的第2位。 黑核神經元 (pars compacta of substantia nigra. SNpc) 多巴胺神經細胞數目的減少及細胞質內含Lewy body為此病的病理特徵。巴金森氏病除了小部份屬於家族遺傳病例外,大部份病患的致病機轉尚未完全清楚。最近文獻報告指出長期暴露於殺蟲及殺魚毒物rotenone的老鼠會產生類似巴金森氏病的病理特徵:黑核神經元多巴胺神經細胞數目的減少及細胞質內含Lewy body。 但是對於低劑量的rotenone是否會引起移動行為障礙? 如果低劑量的rotenone會引起移動行為障礙,會在暴露rotenone多久後發生? Rotenone所引起的移動行為障礙與黑核多巴胺神經元的形態變化是否有任何相關?這些問題仍然有待釐清。本研究的研究目標為探討: (1) 暴露於rotenone多久後Lewis老鼠會出現行為變化, (2) rotenone 引起Lewis老鼠黑核多巴胺神經元形態變化所需的時間,及 (3) 给予rotenone 後Lewis老鼠的行為變化與黑核多巴胺神經元形態變化之間的相關性。
經過兩次前驅試驗,本研究共使用55隻實驗鼠,其中6隻為對照組,49隻為實驗組。實驗組的老鼠每天接受皮下注射rotenone 後存活15隻,其中有8隻為rotenone-7天組 及 7隻rotenone-14天組。 對照組及rotenone-14天組兩組分別於第0、7及14天觀察其移動行為, rotenone-7天則於組則於第0及7天進行移動行為觀察。 所有動物於實驗結朿後犧牲,其腦組織包含黑核多巴胺神經元則進行進一步的形態分析。
本研究結果顯示每天接受皮下注射rotenone的實驗鼠會出現高死亡率 (69.4% ) 。於給予rotenone 7天候,老鼠的體重、步履調整能力及格子攀爬能力等顯著下降。黑核多巴胺神經元具非中斷樹突的比例也顯著地下降。除此之外,老鼠調整步履的能力與黑核多巴胺神經元具非中斷樹突的比例之間有顯著地正相關。
本研究結論顯示儘管所使用rotenone劑量較文獻為低、也能於第7天讓Lewis鼠產生類似巴金森氏病症狀的行為變化及黑核多巴胺神經元形態變化,而且這兩者之間存在著顯著的正相關。此研究結果也支持生活環境中的神經毒物如rotenone能損害人體黑核多巴胺神經元而產生類似巴金森氏並的主張。
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease that affects approximately 1 to 3 % of the population with the age over 65. Though genetic mutations of the α-synuclein, Parkin or ubiquitin carboxy-terminal hydrolase-L1 (UCHL1) causing PD have been reported, the etiology of the majority of PD remains unclear. PD is characterized by a dramatic loss of the dopaminergic neurons and the presence of Lewy bodies in the substantia nigra (SN), especially in the pars compacta (SNpc). Recent evidence suggests that long-term exposure to rotenone, one of the mitochondrial complex I inhibitor and commonly used as a natural botanical insecticide and piscicide, leads to dopaminergic neuronal loss and Lewy body formation in the SN, which mimic the pathology of PD. However, whether exposure to lower doses of rotenone results in behavioral deficits and whether the behavioral deficits correlate with the neuromorphometrical changes in the SN are still undetermined. In this study, we aimed (1) to determine the onset of behavioral changes following rotenone treatment, (2) to examine the dose-response effect of rotenone on dopaminergic neuronal loss in the SNpc and (3) to correlate the behavioral changes with the neuromorphometrical change of the dopaminergic neurons in the SNpc of rats following rotenone treatment.
After evaluation of the delivery routes and doses of rotenone with two pilot studies, fifty-five adult male Lewis rats were allocated into three groups: the control group, the 7-day rotenone group and the 14-day rotenone group. Rotenone (1.5 mg/ml/kg) was given to rats daily for 7 days and 14 days by subcutaneous injection (sc) in the 7-day and 14-day rotenone group, respectively. Control animals received daily sc injection of vehicle for 14 days. The body weight and movement behavior of animals were recorded before treatment, 7, and/or 14 days after rotenone or vehicle treatment and the morphology of the SNpc was also evaluated. Our results indicated that application of rotenone resulted in a high mortality rate (69.4%) and led to a lower body weight, a decreased ability in adjusting steps and a longer latency in the grid test in both rotenone-treated groups. Animals in the 14-day rotenone group also displayed an increased paw retraction time. Both groups of rotenone–treated animals showed a significant reduction in the ratio of dopaminergic neurons with uninterrupted dendrites. Furthermore, there was a positive correlation between the number of adjusting steps and the ratio of dopaminergic neurons with uninterrupted dendrites in the SNpc. Our results demonstrate that exposure to low-dose rotenone leads to behavioral deficits and neuromorphometrical change of dopaminergic neurons in the SNpc of rats and strongly support the idea that exposure to environmental toxin, rotenone, may result in a dramatic loss of dopaminergic neurons in the SNpc of PD patients.
Contents
Chinese Abstract 6
Abstract 8
Introduction 10
Etiology and epidemiology of Parkinson’s disease 10
Diagnosis of Parkinson’s disease 12
Treatments of Parkinson’s disease 13
Animal models of Parkinson’s disease 17
Background 19
Purposes 21
Materials and Methods 22
Pilot study I 22
Pilot study II 23
Experiment 24
Animals 24
Behavioral tests 25
Immunohistochemical study 26
Counting of neurons with TH-LI in the SNpc 28
Ratio of TH-LI neurons with uninterrupted dendrites 28
Statistical analysis 29
Results 30
Pilot study I 30
Pilot study II 30
Experiment 30
Application of rotenone resulted in high mortality of rats 30
Application of rotenone led to a lower body weight 30
Rotenone treatment resulted in behavioral deficits 30
Rotenone treatment induced a loss of neurons with
TH-LI in the SNpc 33
Subcutaneous injections of rotenone decreased the ratio of
TH-LI neurons with uninterrupted dendrites in the SNpc 33
Correlation between behavioral change and neuromorphometry 34
Discussion 35
References 40
Figures
Fig. 1. Apparatus for the paw retraction test 52
Fig. 2 The exit of the osmotic pump was blocked by coagulated materials 53
Fig. 3 Effect of rotenone on the body weight of rats. 54
Fig. 4 Effect of rotenone on paw retraction time. 55
Fig. 5 Effect of rotenone on the number of adjusting steps 56
Fig. 6 Effect of rotenone on the grid test 57
Fig. 7. Effect of rotenone exposure on the performance of bar test 58
Fig. 8. Effect of roteone on the dopaminergic neurons in the dorsal
tier of SNpc 59
Fig .9. Ratio of dopaminergic neurons with uninterrupted dendrites 60
Fig. 10. Number of dopaminergic neurons and ratio of dopaminergic neurons with uninterrupted dendrites in the SNpc. 61
Fig. 11. The ratio of dopaminergic neurons in the SNpc with uninterrupted dendrites was highly correlated with the number of adjusting steps. 63
Agid Y. 1991. Parkinson's disease: pathophysiology. Lancet 337:1321-1324.
Arenas E. 2002. Stem cells in the treatment of Parkinson’s disease.Brain Res Bull 57: 795–808.
Bashkatova V, Alam M, Vanin A, and Schmidt W J. 2004. Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain. Exp Neurol 186: 235–241.
Beal MF. 2000. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23: 294–300.
Beal MF. 2001. Experimental models of Parkinson's disease. Nat Rev Neurosci 2:325-334.
Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. 1973. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415-455.
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. 2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3:1301-1306.
Bezard, E. et al. 1999. Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp. Neurol 155: 268–273.
Bloem BR et al. 1990. The MPTP model: versatile contributions to the treatment of idiopathic Parkinson’s disease. J. Neurol. Sci 97: 273–293.
Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM. 2001. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 65:135-172.
Burchiel KJ. 1995.Thalamotomy for movement disorders. Neurosurg Clin N Am: 6: 55–71.
Burns RS et al. 1983. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl Acad. Sci. USA 80: 4546–4550.
Bywood PT, Johnson SM. 2000. Dendrite loss is a characteristic early indicator of toxin-induced neurodegeneration in rat midbrain slices. Exp. Neurol 161: 306–316.
Bywood PT, Johnson SM. 2003. Mitochondrial Complex Inhibitors preferentially damage Substantia Nigra Dopamine Neurons in Rat brain slices. Exp Neurol 179: 47-59.
Calne DB, Snow BJ, Lee C. Criteria for diagnosing Parkinson’s disease. Ann Neurol 1992; 32 (suppl): S125–27.
Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175: 303-317.
Ellenbroek, B. A., B. W. Peeters, W. M. Honig, and A. R. Cools, 1987. The paw test: a behavioural paradigm for differentiating between classical and atypical neuroleptic drugs. Psychopharmacology 93: 343–348.
Etminan M, Gill S, Samii A. 2003. Comparison of the risk of adverse events with pramipexole and ropinirole in patients with Parkinson’s disease a meta-analysis. Drug Saf 26: 439–44.
Etminan M, Samii A, Takkouche B, Rochon PA. 2001. Increased risk of somnolence with the new dopamine agonists in patients with Parkinson’s disease: a meta-analysis of randomised controlled trials. Drug Saf 24: 863–8.
Feany MB. 2004. New Genetic Insights into Parkinson’s Disease. N Engl J Med 351:19:1937-1940.
Fearnley JM, Lees AJ. 1991. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114: 2283–301.
Fleming SM, Zhu C, Fernagnut PO, Mehta A, DiCarlo CD, Seaman RL, and Chesselet MF. 2004. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 187: 418-429.
Freed CR, Greene PE, Breeze RE et al. 2001. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344: 710–19.
Giasson BI, Lee VM. 2000. A new link between pesticides and Parkinson's disease. Nat Neurosci 3:1227-1228.
Goetz CG. 2003. Treatment of advanced Parkinson’s disease: an evidence-based analysis. Adv Neurol; 91: 213–28.
Golbe LI. 1991. Young-onset Parkinson’s disease: a clinical review. Neruol 41: 168–73.
Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ. 1998. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurol 50:1346-1350.
Greenamyre JT, O’Brien CF. 1991. N-methyl-D-aspartate antagonists in the treatment of Parkinson’s disease. Arch Neurol 48: 977–81.
Guridi J, Lozano AM. 1997. A brief history of pallidotomy. Neurosurg 41: 1169–80.
He Y, Imam SZ, Dong Z, Jankovic J, Ali SF, Appel SH, and Le W. 2003. Role of nitric oxide in rotenone-induced nigro-striatal injury. J Neurochem 86: 1338-45.
Homann CN, Wenzel K, Suppan K, Ivanic G, Crevenna R, Ott E. 2003. Sleep attacks: facts and fiction—a critical review. Adv Neurol 91: 335–41.
Huang WS, Lin SZ, Lin JC, Wey SP, Ting G, Liu RS. 2001. Evaluation of early-stage Parkinson's disease with 99mTc-TRODAT-1 imaging. J Nucl Med 42:1303-1308.
Inzelberg R, Schechtman E, Paleacu D. 2002. Onset age of Parkinson disease. Am J Med Genet; 111: 459–60.
Johnson, S. M., and P. T. Bywood. 1998. Excitatory amino acid-induced degeneration of dendrites of catecholamine neurons in rat substantia nigra. Exp. Neurol. 151: 229–236.
Kao PF, Tzen KY, Yen TC, Lu CS, Weng YH, Wey SP, Ting G. 2001. The optimal imaging time for [99Tcm]TRODAT-1/SPET in normal subjects and patients with Parkinson's disease. Nucl Med Commun 22:151-154.
Kuiper MA, Teerlink T, Visser JJ, Bergmans PL, Scheltens P, Wolters EC. 2000. L-glutamate, L-arginine and L-citrulline levels in cerebrospinal fluid of Parkinson's disease, multiple system atrophy, and Alzheimer's disease patients. Neural Transm 107:183-189.
Lang AE, Lozano AM. 1998. Parkinson’s disease: First of Two Parts. N Engl J Med . 339 (15): 1044-1053.
Limousin P, Krack P, Pollak P, et al. 1998. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339: 1105–11.
Lin JJ, Yueh KC, Chang DC, Lin SZ. 1999. Absence of G209A and G88C mutations in the alpha-synuclein gene of Parkinson's disease in a Chinese population. Eur Neurol 42:217-220.
Lin JJ, Yueh KC, Chang DC, Lin SZ. 2002. Association between genetic polymorphism of angiotensin-converting enzyme gene and Parkinson's disease. J Neurol Sci 199:25-29.
Lindner MD, Cain CK, Plone MA, Frydel BR, Blaney TJ, Emerich DF, and Hoane MR. 1999. Incomplete nigrostriatal dopaminergic cell loss and partial reductions in striatal dopamine produce akinesia, rigidity, tremor and cognitive deficits in middle-aged rats. Behav. Brain Res 102: 1–16.
Lindner MD, Winn S, Baetge EE, Hammang JP, Gentile FT, Doherty E, McDermott PE, Frydel B, Schallert T, et al. 1995. Implantation of encapsulated catecholamine and GDNF producing cells in rats with unilateral dopamine depletions and parkinsonian symptoms. Exp. Neurol 132, 62– 76.
Lozano AM. 2003. Surgery for Parkinson’s disease, the five W’s:why, who, what, where, and when. Adv Neurol 91:303–07.
Masliah E et al. 2000. Dopaminergic loss and inclusion bodyformation in -synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269.
Menegon A, Board PG, Blackburn AC, Mellick GD, Le Couteur DG. 1998. Parkinson's disease, pesticides, and glutathione transferase polymorphisms. Lancet 352:1344-1346.
Moghal S, Rajput AH, D’Arcy C, Rajput R. 1994. Prevalence of movement disorders in elderly community residents. Neuroepidemiol 13(4):175-8.
Moro E, Scerrati M, Romito LM, Roselli R, Tonali P, Albanese A. 1999. Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurol 53: 85–90.
Parkinson Study Group. 2000. Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. JAMA 284: 1931–38.
Paxinos G, Watson C. 1998. In: The rat brain in stereotaxic coordinates. 4th ed. Academic Press, San Diego, California, USA.
Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS. 2001. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neurosci106:589-601.
Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. 2000. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342:1484–91.
Samii A, Nutt JG, Ransom BR. 2004. Genes linked to familial Parkinson’s disease. Lancet 363: 1783–93.
Sauer H,Oertel WH. 1994.Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat.Neurosci 59: 401–415.
Schallert T., Tillerson J.L. 2000. Intervention strategies for degeneration of DA neurons in parkinsonism: optimizing behavioral assessment of outcome. In: Emerich, D.F., Dean III, R.L., Sandberg, P.R. (Eds.), Central Nervous System Diseases. Humana Press, Torowa, NJ.
Schapira AH, Obeso JA, Olanow CW. 2000. The place of COMT inhibitors in the armamentarium of drugs for the treatment of Parkinson’s disease. Neurol 55 (11 suppl 4): S65–68.
Schapira AH, Olanow CW. Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions. JAMA 2004; 291:358–64.
Schuurman PR, Bosch DA, Bossuyt PM et al. 2000. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 342: 461–68.
Sherer TB, Kim JH, Betarbet R, Greenamyre JT. 2003. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9-16.
Schulzer M, Mak E, Calne DB. 1992. The antiparkinson efficacy of deprenyl derives from transient improvement that is likely to be symptomatic. Ann Neurol 32: 795–98.
Shults CW, Oakes D, Kieburtz K, et al. 2002. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59: 1541–50.
Steece-Collier K, Maries E, Kordower JH. 2002. Etiology of Parkinson’s disease: Genetics and environment revisited. Proc Natl Acad Sci USA 99: 13972–74.
Stoessl AJ, Rivest J. Differential diagnosis of parkinsonism. Can J Neurol Sci 1999; 26 (suppl 2): S1–4.
Tanner CM, Ottman R, Goldman SM, et al. 1999. Parkinson disease in twins: an etiologic study. JAMA; 281: 341–46.
The Deep-Brain Stimulation For Parkinson’s Disease Study Group. 2001. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345: 956–63.
Tomlin CDS Ed. 2003, The Pesticide Manual, 13th ed., British Crop Protection Council, Alton, Hampshire, United Kingdom.
Ungerstedt, U. Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand 367:S49–S68 (1971).
van der Putten, H. et al. 2000 Neuropathology in mice expressing human -synuclein. J Neurosci 20:6021–6029.
Verhagen Metman L, Del Dotto P, van den Munckhof P, Fang J, ouradian MM, Chase TN. 1998. Amantadine as treatment for yskinesias and motor fluctuations in Parkinson’s disease. Neurol 50: 1323–26.
Volkmann J, Sturm V, Weiss P, et al. 1998. Bilateral high-frequency stimulation of the internal globus pallidus in advanced Parkinson’s disease. Ann Neurol 44: 953–61.
Ward CD, Gibb WR. 1990. Research diagnostic criteria for Parkinson’s disease. Adv Neurol 53: 245–49.
Yang LY, Arnold AP. 2000a. BDNF regulation of androgen receptor expression in axotomized SNB motoneurons of adult male rats. Brain Res 852:127-139.
Yang LY, Arnold AP. 2000b. Interaction of BDNF and testosterone in the regulation of adult perineal motoneurons. J Neurobiol 44:308-319.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔