(3.237.178.91) 您好!臺灣時間:2021/03/04 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡弘曆
研究生(外文):Hung-Li Tsai
論文名稱:關節修復與再生的細胞外間質改變
論文名稱(外文):Extracellular Matrix Changes in Joint Repair and Regeneration
指導教授:賴文福賴文福引用關係
指導教授(外文):Wen-Fu Lai
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:生物醫學材料研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:70
中文關鍵詞:組織再生顳顎關節細胞外間質膠原蛋白退化性關節炎關節板
外文關鍵詞:tissue regenerationtemporomandibular jointextracellular matrixcollagenosteoarthritisarticular disc
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
從老鼠尾韌帶萃取的第一型膠原蛋白,研發出一種有生物降解性的重組膠原蛋白模板,使用在顳顎關節關節板的修復與再生。本實驗目的是研究關節關節板組織細胞外間質的變化以及再生的機制。
本實驗使用32隻紐西蘭白兔,4隻做假手術,4隻為控制組而其餘動物則做部分顳顎關節關節板切除手術。在關節板被切除的動物,以重組膠原蛋白植體來再生關節板。假手術及對照組的動物,並沒有使用任何植體。之後,手數植入後一個月、兩個月、三個月將關節製成組織切片,使用第一型膠原蛋白與第二型膠原蛋白抗體做免疫組織染色以及H&E染色來觀察組織變化。
除了比較植體治療再生的關節板與自然狀態關節板的相異性,以確立再生關節板的修復與功能。並觀察再生時細胞外間質的改變與細胞的變化,進一步探討再生的機制。
結果顯示。在部分切除關節板且沒有使用植體的關節,隨著時間進展,關節的病變愈嚴重。三個月後關節軟骨完全破壞,骨頭裸露。纖維化區域會有大量第一型膠原蛋白。而第二型膠原蛋白則表現在增生的軟骨區域。相對的,使用重組膠原蛋白模板植體的關節,關節板會展現再生作用。隨著時間關節板再生愈多,對關節軟骨的保護愈多。關節板再生組織的細胞外間質會先從細胞分泌,再形成不規則排列纖維,之後經由重塑而成纖維排列規則緊密的關節板。膠原蛋白的表現也會跟著增加。再生組織的細胞會漸漸分化成軟骨母細胞,細胞周圍的纖維呈現緻密排列而看起來較小。最後,可以觀察到再生組織的細胞外型、細胞外間質組成與膠原蛋白表現都會近似於正常組織。
結論:重組膠原蛋白模板植體能有效促使手術引發缺損的關節板再生。關節板組織再生機制與細胞外間質有密切的關聯,特別是第一型及第二型膠原蛋白。
Reconstituted type I collagen matrix extracted from the rat tail tendon was utilized to regenerate the temporomandibular joint disc in the rabbit. The aim of this study was to examine extracellular matrix changes and mechanisms of regeneration in the temporomandibular joint disc.
Thirty-two New Zealand rabbits underwent either sham surgical procedures or partial temporomandibular joint discectomy. In animals that underwent partial discectomy, the discs were replaced by reconstituted collagen templates. Some of the surgerized animals did not receive any implant. Tissue sections of the surgerized temporomandibular joint were obtained at 1-, 2-, and 3-month interval after surgery. Tissue morphology was evaluated either by gross and histology. Collagen changes of the disc were determined using immunohistochemistry.
To confirm the structure and function of regenerative disc, this study compared the differences of regenerative and native disc. Additionally the changes of extracellular matrix and cell morphology were taken to understanding the mechanism of disc regeneration.
Histology showed that the joint appeared more severe degeneration in the partially discectomized joint without implantation when time passed. After 3 months, the cartilage was fully destroyed and the bone was entirely exposed. In untreated joints, the condyle exhibited type I collagen in the fibrous regions and type II collagen in areas of proliferative cartilage. In contrast, discs that recievied reconstituted collagen template regenerated and the extracellular matrix of regenerative disc could return normal to protect joint. Cells in the regenerative tissue expressed extracellular matrix first, and then the tissue formed fibers randomly. Gradually, fibers became regular and compact by tissue remodeling and collagen expression increased. The reparative cells differentiated into chondroblasts, and the peri-cellular fibers showed a heavy density. Cell morphology appeared smaller compared to the early stage of repair. Finally, the morphology, extracellular matrix composition and the collagen expression of the disc and condyle was similar to that of normal tissue.
In conclusion, the reconstituted collagen template effectively facilitated a regeneration for the surgically discectomized discs. The regeneration of articular discs had correlate closely with extracellular matrix, especially type I and type II collagen.
壹、前言………………………………………………………………………...1
貳、文獻回顧…………………………………………………………………...4
一、關節軟骨……………………………………………………………...4
(一) 關節解剖學……………………………………………………..4
(二) 關節組織學……………………………………………………..7
(三) 關節生理學……………………………………………………14
二、關節炎……………………………………………………………….16
(一) 關節炎的分類…………………………………………………16
(二) 退化性關節炎…………………………………………………17
三、治療…………………………………………………………………20
(一) 非藥物治療…………………………………………………....20
(二) 藥物治療………………………………………………………21
(三) 手術……………………………………………………………23
四、軟骨再生……………………………………………………………25
(一) 再生的定義……………………………………………………25
(二) 細胞與環境……………………………………………………26
(三) 組織工程………………………………………………………27
參、實驗目的…………………………………………………………………29
肆、特定目標………………………………………………………………....30
伍、實驗材料及實驗方法……………………………………………………31
一、實驗動物……………………………………………………………31
二、實驗設計……………………………………………………………32
三、重組膠原蛋白模板………………………………………………....33
四、外科手術……………………………………………………………34
五、組織染色…………………………………………………………....35
六、免疫組織染色………………………………………………………36
陸、實驗結果…………………………………………………………………37
柒、討論………………………………………………………………………41
捌、參考文獻…………………………………………………………………45
1.Farrar, W.B. and W.L. McCarty, Jr., The TMJ dilemma. J Ala Dent Assoc, 1979. 63(1): p. 19-26.
2.Milam, S.B., et al., Characterization of the extracellular matrix of the primate temporomandibular joint. J Oral Maxillofac Surg, 1991. 49(4): p. 381-91.
3.Landesberg, R., E. Takeuchi, and J.E. Puzas, Cellular, biochemical and molecular characterization of the bovine temporomandibular joint disc. Arch Oral Biol, 1996. 41(8-9): p. 761-7.
4.Mills, D.K., D.J. Fiandaca, and R.P. Scapino, Morphologic, microscopic, and immunohistochemical investigations into the function of the primate TMJ disc. J Orofac Pain, 1994. 8(2): p. 136-54.
5.Kondoh, T., et al., Regional differences of type II collagen synthesis in the human temporomandibular joint disc: immunolocalization study of carboxy-terminal type II procollagen peptide (chondrocalcin). Arch Oral Biol, 2003. 48(9): p. 621-5.
6.Nakano, T. and P.G. Scott, Changes in the chemical composition of the bovine temporomandibular joint disc with age. Arch Oral Biol, 1996. 41(8-9): p. 845-53.
7.Keith, D.A., Elastin in the bovine mandibular joint. Arch Oral Biol, 1979. 24(3): p. 211-5.
8.Scapino, R.P., et al., The behaviour of collagen fibres in stress relaxation and stress distribution in the jaw-joint disc of rabbits. Arch Oral Biol, 1996. 41(11): p. 1039-52.
9.Humphreys, T., Aggregation of chemically dissociated sponge cells in the absence of protein synthesis. J Exp Zool, 1965. 160(2): p. 235-9.
10.Sayre, F.W., et al., Growth factor studies; changes in reactivity of sulfhydryl groups with activation. Biochim Biophys Acta, 1968. 160(1): p. 63-8.
11.Sharp, H.C., Vasectomy as a means of preventing procreation in defectives. J Am Med Assoc, 1909. 53(23): p. 1897-902.
12.Farrar, W.B., Diagnosis and treatment of anterior dislocation of the articular disc. N Y J Dent, 1971. 41(10): p. 348-51.
13.Wilkes, C.H., Arthrography of the temporomandibular joint in patients with the TMJ pain-dysfunction syndrome. Minn Med, 1978. 61(11): p. 645-52.
14.Dolwick, M.F. and R.R. Riggs, Diagnosis and treatment of internal derangements of the temporomandibular joint. Dent Clin North Am, 1983. 27(3): p. 561-72.
15.Hall, M.B., Meniscoplasty of the displaced temporomandibular joint meniscus without violating the inferior joint space. J Oral Maxillofac Surg, 1984. 42(12): p. 788-92.
16.Dimitroulis, G. and M.F. Dolwick, Temporomandibular disorders. Part 3. Surgical treatment. Aust Dent J, 1996. 41(1): p. 16-20.
17.Dolwick, M.F. and T.B. Aufdemorte, Silicone-induced foreign body reaction and lymphadenopathy after temporomandibular joint arthroplasty. Oral Surg Oral Med Oral Pathol, 1985. 59(5): p. 449-52.
18.Heffez, L., et al., CT evaluation of TMJ disc replacement with a Proplast-Teflon laminate. J Oral Maxillofac Surg, 1987. 45(8): p. 657-65.
19.Kaplan, P.A., et al., Erosive arthritis of the temporomandibular joint caused by Teflon-Proplast implants: plain film features. AJR Am J Roentgenol, 1988. 151(2): p. 337-9.
20.Schellhas, K.P., et al., Permanent Proplast temporomandibular joint implants: MR imaging of destructive complications. AJR Am J Roentgenol, 1988. 151(4): p. 731-5.
21.Chuong, R. and M.A. Piper, Cerebrospinal fluid leak associated with proplast implant removal from the temporomandibular joint. Oral Surg Oral Med Oral Pathol, 1992. 74(4): p. 422-5.
22.Henry, C.H. and L.M. Wolford, Treatment outcomes for temporomandibular joint reconstruction after Proplast-Teflon implant failure. J Oral Maxillofac Surg, 1993. 51(4): p. 352-8; discussion 359-60.
23.Wagner, J.D. and E.L. Mosby, Assessment of Proplast-Teflon disc replacements. J Oral Maxillofac Surg, 1990. 48(11): p. 1140-4.
24.Lieberman, J.M., et al., Dermal grafts of the temporomandibular joint: postoperative appearance on MR images. Radiology, 1990. 176(1): p. 199-203.
25.Lai, W.F., et al., Histological analysis of regeneration of temporomandibular joint discs in rabbits by using a reconstituted collagen template. Int J Oral Maxillofac Surg, 2005. 34(3): p. 311-20.
26.Schumacher, B.L., et al., Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J Orthop Res, 1999. 17(1): p. 110-20.
27.Stockwell, R.A., The cell density of human articular and costal cartilage. J Anat, 1967. 101(4): p. 753-63.
28.Brower, T.D. and W.Y. Hsu, Normal articular cartilage. Clin Orthop, 1969. 64: p. 9-17.
29.Lefebvre, V., et al., SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol, 1997. 17(4): p. 2336-46.
30.de Crombrugghe, B., et al., Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol, 2000. 19(5): p. 389-94.
31.Roach, H.I., New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix. J Bone Miner Res, 1997. 12(5): p. 795-805.
32.Zerega, B., et al., Parathyroid hormone [PTH(1-34)] and parathyroid hormone-related protein [PTHrP(1-34)] promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation of osteoblast-like cells. J Bone Miner Res, 1999. 14(8): p. 1281-9.
33.Aydelotte, M.B. and K.E. Kuettner, Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect Tissue Res, 1988. 18(3): p. 205-22.
34.Aydelotte, M.B., R.R. Greenhill, and K.E. Kuettner, Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res, 1988. 18(3): p. 223-34.
35.Venn, M.F., Chemical composition of human femoral and head cartilage: influence of topographical position and fibrillation. Ann Rheum Dis, 1979. 38(1): p. 57-62.
36.Weiss, C., L. Rosenberg, and A.J. Helfet, An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg Am, 1968. 50(4): p. 663-74.
37.Minns, R.J. and F.S. Steven, The collagen fibril organization in human articular cartilage. J Anat, 1977. 123(2): p. 437-57.
38.Lane, J.M. and C. Weiss, Review of articular cartilage collagen research. Arthritis Rheum, 1975. 18(6): p. 553-62.
39.Akizuki, S., et al., Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res, 1986. 4(4): p. 379-92.
40.Poole, A.R., et al., Contents and distributions of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage. J Orthop Res, 1996. 14(5): p. 681-9.
41.Poole, A.R., et al., Localization of a dermatan sulfate proteoglycan (DS-PGII) in cartilage and the presence of an immunologically related species in other tissues. J Histochem Cytochem, 1986. 34(5): p. 619-25.
42.Keene, D.R., E. Engvall, and R.W. Glanville, Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J Cell Biol, 1988. 107(5): p. 1995-2006.
43.Poole, A.R., et al., Localization of proteoglycan monomer and link protein in the matrix of bovine articular cartilage: An immunohistochemical study. J Histochem Cytochem, 1980. 28(7): p. 621-35.
44.Eyre, D.R., J.J. Wu, and P.E. Woods, The cartilage collagens: structural and metabolic studies. J Rheumatol Suppl, 1991. 27: p. 49-51.
45.Wu, J.J., D.R. Eyre, and H.S. Slayter, Type VI collagen of the intervertebral disc. Biochemical and electron-microscopic characterization of the native protein. Biochem J, 1987. 248(2): p. 373-81.
46.Chang, J. and C.A. Poole, Sequestration of type VI collagen in the pericellular microenvironment of adult chrondrocytes cultured in agarose. Osteoarthritis Cartilage, 1996. 4(4): p. 275-85.
47.Poole, C.A., S. Ayad, and J.R. Schofield, Chondrons from articular cartilage: I. Immunolocalization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J Cell Sci, 1988. 90 ( Pt 4): p. 635-43.
48.Diab, M., J.J. Wu, and D.R. Eyre, Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites. Biochem J, 1996. 314 ( Pt 1): p. 327-32.
49.Wu, J.J., P.E. Woods, and D.R. Eyre, Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem, 1992. 267(32): p. 23007-14.
50.Ichimura, S., J.J. Wu, and D.R. Eyre, Two-dimensional peptide mapping of cross-linked type IX collagen in human cartilage. Arch Biochem Biophys, 2000. 378(1): p. 33-9.
51.Hagg, R., P. Bruckner, and E. Hedbom, Cartilage fibrils of mammals are biochemically heterogeneous: differential distribution of decorin and collagen IX. J Cell Biol, 1998. 142(1): p. 285-94.
52.Poole, C.A., et al., Immunolocalization of type IX collagen in normal and spontaneously osteoarthritic canine tibial cartilage and isolated chondrons. Osteoarthritis Cartilage, 1997. 5(3): p. 191-204.
53.Brewton, R.G., D.W. Wright, and R. Mayne, Structural and functional comparison of type IX collagen-proteoglycan from chicken cartilage and vitreous humor. J Biol Chem, 1991. 266(8): p. 4752-7.
54.Schmid, T.M. and T.F. Linsenmayer, Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol, 1985. 100(2): p. 598-605.
55.Schmid, T.M., R.G. Popp, and T.F. Linsenmayer, Hypertrophic cartilage matrix. Type X collagen, supramolecular assembly, and calcification. Ann N Y Acad Sci, 1990. 580: p. 64-73.
56.Mendler, M., et al., Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol, 1989. 108(1): p. 191-7.
57.Hardingham, T.E. and H. Muir, Hyaluronic acid in cartilage and proteoglycan aggregation. Biochem J, 1974. 139(3): p. 565-81.
58.Schwartz, N.B., et al., Domain organization, genomic structure, evolution, and regulation of expression of the aggrecan gene family. Prog Nucleic Acid Res Mol Biol, 1999. 62: p. 177-225.
59.Watanabe, H., Y. Yamada, and K. Kimata, Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem (Tokyo), 1998. 124(4): p. 687-93.
60.Mow, V.C., et al., The influence of link protein stabilization on the viscometric properties of proteoglycan aggregate solutions. Biochim Biophys Acta, 1989. 992(2): p. 201-8.
61.Asari, A., et al., Localization of hyaluronic acid in human articular cartilage. J Histochem Cytochem, 1994. 42(4): p. 513-22.
62.Rosenberg, L.C., et al., Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages. J Biol Chem, 1985. 260(10): p. 6304-13.
63.Chow, G., et al., Antisense inhibition of chondrocyte CD44 expression leading to cartilage chondrolysis. Arthritis Rheum, 1998. 41(8): p. 1411-9.
64.Mollenhauer, J., et al., Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. J Cell Biol, 1984. 98(4): p. 1572-9.
65.Turnay, J., et al., Collagen binding activity of recombinant and N-terminally modified annexin V (anchorin CII). J Cell Biochem, 1995. 58(2): p. 208-20.
66.Pilar Fernandez, M., et al., The structure of anchorin CII, a collagen binding protein isolated from chondrocyte membrane. J Biol Chem, 1988. 263(12): p. 5921-5.
67.Camper, L., D. Heinegard, and E. Lundgren-Akerlund, Integrin alpha2beta1 is a receptor for the cartilage matrix protein chondroadherin. J Cell Biol, 1997. 138(5): p. 1159-67.
68.Salter, D.M., et al., Integrin-interleukin-4 mechanotransduction pathways in human chondrocytes. Clin Orthop, 2001(391 Suppl): p. S49-60.
69.Saxne, T. and D. Heinegard, Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Br J Rheumatol, 1992. 31(9): p. 583-91.
70.Okimura, A., et al., Enhancement of cartilage matrix protein synthesis in arthritic cartilage. Arthritis Rheum, 1997. 40(6): p. 1029-36.
71.de Bont, L.G., et al., Collagenous network in cartilage of human femoral condyles. A light microscopic and scanning electron microscopic study. Acta Anat (Basel), 1986. 126(1): p. 41-7.
72.Jeffery, A.K., et al., Three-dimensional collagen architecture in bovine articular cartilage. J Bone Joint Surg Br, 1991. 73(5): p. 795-801.
73.Maroudas, A.I., Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature, 1976. 260(5554): p. 808-9.
74.Mankin, H.J. and A.Z. Thrasher, Water content and binding in normal and osteoarthritic human cartilage. J Bone Joint Surg Am, 1975. 57(1): p. 76-80.
75.Linn, F.C. and L. Sokoloff, Movement and Composition of Interstitial Fluid of Cartilage. Arthritis Rheum, 1965. 44: p. 481-94.
76.Lai, W.M., V.C. Mow, and V. Roth, Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J Biomech Eng, 1981. 103(2): p. 61-6.
77.Gray, M.L., et al., Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res, 1988. 6(6): p. 777-92.
78.Gu, W.Y., W.M. Lai, and V.C. Mow, Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J Biomech, 1993. 26(6): p. 709-23.
79.Palmoski, M., E. Perricone, and K.D. Brandt, Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis Rheum, 1979. 22(5): p. 508-17.
80.Hall, A.C., E.R. Horwitz, and R.J. Wilkins, The cellular physiology of articular cartilage. Exp Physiol, 1996. 81(3): p. 535-45.
81.Buckwalter, J.A. and H.J. Mankin, Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect, 1998. 47: p. 477-86.
82.Saklatvala, J., Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature, 1986. 322(6079): p. 547-9.
83.Lotz, M., et al., Cytokine regulation of chondrocyte functions. J Rheumatol Suppl, 1995. 43: p. 104-8.
84.McGuire-Goldring, M.B., et al., In vitro activation of human chondrocytes and synoviocytes by a human interleukin-1-like factor. Arthritis Rheum, 1984. 27(6): p. 654-62.
85.Roughley, P.J., Q. Nguyen, and J.S. Mort, Mechanisms of proteoglycan degradation in human articular cartilage. J Rheumatol Suppl, 1991. 27: p. 52-4.
86.Lotz, M. and P.A. Guerne, Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA). J Biol Chem, 1991. 266(4): p. 2017-20.
87.Mankin, H.J., et al., Growth factors and articular cartilage. J Rheumatol Suppl, 1991. 27: p. 66-7.
88.Osborn, K.D., S.B. Trippel, and H.J. Mankin, Growth factor stimulation of adult articular cartilage. J Orthop Res, 1989. 7(1): p. 35-42.
89.Morovic-Vergles, J., [Pathophysiology of rheumatoid arthritis]. Reumatizam, 2003. 50(2): p. 15-7.
90.Lark, M.W., et al., Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest, 1997. 100(1): p. 93-106.
91.Reboul, P., et al., The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J Clin Invest, 1996. 97(9): p. 2011-9.
92.Brandt, K.D., Effects of nonsteroidal anti-inflammatory drugs on chondrocyte metabolism in vitro and in vivo. Am J Med, 1987. 83(5A): p. 29-34.
93.Pettipher, E.R., et al., Effect of indomethacin on swelling, lymphocyte influx, and cartilage proteoglycan depletion in experimental arthritis. Ann Rheum Dis, 1989. 48(8): p. 623-7.
94.Brittberg, M., et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med, 1994. 331(14): p. 889-95.
95.Leblond, C.P. and B.E. Walker, Renewal of cell populations. Physiol Rev, 1956. 36(2): p. 255-76.
96.Cohen, S., Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem, 1962. 237: p. 1555-62.
97.Carpenter, G. and S. Cohen, Epidermal growth factor. J Biol Chem, 1990. 265(14): p. 7709-12.
98.Heldin, C.H., Structural and functional studies on platelet-derived growth factor. Embo J, 1992. 11(12): p. 4251-9.
99.Betsholtz, C. and E.W. Raines, Platelet-derived growth factor: a key regulator of connective tissue cells in embryogenesis and pathogenesis. Kidney Int, 1997. 51(5): p. 1361-9.
100.Friesel, R.E. and T. Maciag, Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. Faseb J, 1995. 9(10): p. 919-25.
101.Dvorak, H.F., et al., Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol, 1995. 146(5): p. 1029-39.
102.Jeltsch, M., et al., Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science, 1997. 276(5317): p. 1423-5.
103.Munger, J.S., et al., Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int, 1997. 51(5): p. 1376-82.
104.Hanada, T. and A. Yoshimura, Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev, 2002. 13(4-5): p. 413-21.
105.Marshall, C.J., Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 1995. 80(2): p. 179-85.
106.Ihle, J.N., Cytokine receptor signalling. Nature, 1995. 377(6550): p. 591-4.
107.Neer, E.J., Heterotrimeric G proteins: organizers of transmembrane signals. Cell, 1995. 80(2): p. 249-57.
108.Vernon, R.B. and E.H. Sage, Between molecules and morphology. Extracellular matrix and creation of vascular form. Am J Pathol, 1995. 147(4): p. 873-83.
109.Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992. 69(1): p. 11-25.
110.Hunziker, E.B., Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage, 2002. 10(6): p. 432-63.
111.Kawamura, S., et al., Articular cartilage repair. Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand, 1998. 69(1): p. 56-62.
112.Frenkel, S.R., et al., Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Joint Surg Br, 1997. 79(5): p. 831-6.
113.Grande, D.A., et al., The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res, 1989. 7(2): p. 208-18.
114.Grande, D.A., I.J. Singh, and J. Pugh, Healing of experimentally produced lesions in articular cartilage following chondrocyte transplantation. Anat Rec, 1987. 218(2): p. 142-8.
115.Katsube, K., et al., Repair of articular cartilage defects with cultured chondrocytes in Atelocollagen gel. Comparison with cultured chondrocytes in suspension. Arch Orthop Trauma Surg, 2000. 120(3-4): p. 121-7.
116.Nehrer, S., et al., Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials, 1998. 19(24): p. 2313-28.
117.Im, G.I., et al., Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg Br, 2001. 83(2): p. 289-94.
118.Solchaga, L.A., et al., Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res, 1999. 17(2): p. 205-13.
119.Kadiyala, S., et al., Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant, 1997. 6(2): p. 125-34.
120.Lennon, D.P., et al., Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis. Dev Dyn, 2000. 219(1): p. 50-62.
121.Wakitani, S., et al., Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am, 1994. 76(4): p. 579-92.
122.Brandstedt, S., F. Rank, and P.S. Olson, Wound healing and formation of granulation tissue in normal and defibrinogenated rabbits. An experimental model and histological study. Eur Surg Res, 1980. 12(1): p. 12-21.
123.van Hinsbergh, V.W., A. Collen, and P. Koolwijk, Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci, 2001. 936: p. 426-37.
124.Speer, D.P., et al., Enhancement of healing in osteochondral defects by collagen sponge implants. Clin Orthop, 1979(144): p. 326-35.
125.Wakitani, S., et al., Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng, 1998. 4(4): p. 429-44.
126.Ponticiello, M.S., et al., Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res, 2000. 52(2): p. 246-55.
127.Pesakova, V., M. Stol, and M. Adam, Comparison of the influence of gelatine and collagen substrates on growth of chondrocytes. Folia Biol (Praha), 1990. 36(5): p. 264-70.
128.Freed, L.E., et al., Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res, 1993. 27(1): p. 11-23.
129.Martin, I., et al., Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res, 2001. 55(2): p. 229-35.
130.Ruuskanen, M.M., et al., Generation of cartilage from auricular and rib free perichondrial grafts around a self-reinforced polyglycolic acid mould in rabbits. Scand J Plast Reconstr Surg Hand Surg, 1994. 28(2): p. 81-6.
131.Chu, C.R., et al., Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res, 1995. 29(9): p. 1147-54.
132.Chu, C.R., A.Z. Monosov, and D. Amiel, In situ assessment of cell viability within biodegradable polylactic acid polymer matrices. Biomaterials, 1995. 16(18): p. 1381-4.
133.Vunjak-Novakovic, G., et al., Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog, 1998. 14(2): p. 193-202.
134.Freed, L.E., I. Martin, and G. Vunjak-Novakovic, Frontiers in tissue engineering. In vitro modulation of chondrogenesis. Clin Orthop, 1999(367 Suppl): p. S46-58.
135.Goa, K.L. and P. Benfield, Hyaluronic acid. A review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound healing. Drugs, 1994. 47(3): p. 536-66.
136.Knudson, C.B., Hyaluronan receptor-directed assembly of chondrocyte pericellular matrix. J Cell Biol, 1993. 120(3): p. 825-34.
137.Kujawa, M.J., D.A. Carrino, and A.I. Caplan, Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol, 1986. 114(2): p. 519-28.
138.Atala, A., et al., Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J Urol, 1993. 150(2 Pt 2): p. 745-7.
139.Atala, A., et al., Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J Urol, 1994. 152(2 Pt 2): p. 641-3; discussion 644.
140.Diduch, D.R., et al., Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy, 2000. 16(6): p. 571-7.
141.Lahiji, A., et al., Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res, 2000. 51(4): p. 586-95.
142.Suh, J.K. and H.W. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000. 21(24): p. 2589-98.
143.Mattioli-Belmonte, M., et al., N,N-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Med Biol Eng Comput, 1999. 37(1): p. 130-4.
144.Messner, K., Hydroxylapatite supported Dacron plugs for repair of isolated full-thickness osteochondral defects of the rabbit femoral condyle: mechanical and histological evaluations from 6-48 weeks. J Biomed Mater Res, 1993. 27(12): p. 1527-32.
145.Messner, K. and J. Gillquist, Synthetic implants for the repair of osteochondral defects of the medial femoral condyle: a biomechanical and histological evaluation in the rabbit knee. Biomaterials, 1993. 14(7): p. 513-21.
146.Messner, K. and J. Gillquist, Prosthetic replacement of the rabbit medial meniscus. J Biomed Mater Res, 1993. 27(9): p. 1165-73.
147.Hanff, G., et al., Repair of osteochondral defects in the rabbit knee with Gore-Tex (expanded polytetrafluoroethylene). An experimental study. Scand J Plast Reconstr Surg Hand Surg, 1990. 24(3): p. 217-23.
148.Minns, R.J. and M. Flynn, Intra-articular implant of filamentous carbon fibre in the experimental animal. J Bioeng, 1978. 2(3-4): p. 279-86.
149.Minns, R.J., D.S. Muckle, and J.E. Donkin, The repair of osteochondral defects in osteoarthritic rabbit knees by the use of carbon fibre. Biomaterials, 1982. 3(2): p. 81-6.
150.Minns, R.J. and D.S. Muckle, Mechanical and histological response of carbon fibre pads implanted in the rabbit patella. Biomaterials, 1989. 10(4): p. 273-6.
151.Mortier, J. and M. Engelhardt, [Foreign body reaction in carbon fiber prosthesis implantation in the knee joint--case report and review of the literature]. Z Orthop Ihre Grenzgeb, 2000. 138(5): p. 390-4.
152.van Beuningen, H.M., et al., In vivo protection against interleukin-1-induced articular cartilage damage by transforming growth factor-beta 1: age-related differences. Ann Rheum Dis, 1994. 53(9): p. 593-600.
153.Glansbeek, H.L., et al., Bone morphogenetic protein 2 stimulates articular cartilage proteoglycan synthesis in vivo but does not counteract interleukin-1alpha effects on proteoglycan synthesis and content. Arthritis Rheum, 1997. 40(6): p. 1020-8.
154.Glansbeek, H.L., et al., Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints. Lab Invest, 1998. 78(2): p. 133-42.
155.Fortier, L.A., et al., Altered biological activity of equine chondrocytes cultured in a three-dimensional fibrin matrix and supplemented with transforming growth factor beta-1. Am J Vet Res, 1997. 58(1): p. 66-70.
156.Nishida, Y., et al., Osteogenic protein-1 promotes the synthesis and retention of extracellular matrix within bovine articular cartilage and chondrocyte cultures. Osteoarthritis Cartilage, 2000. 8(2): p. 127-36.
157.van Osch, G.J., et al., Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthritis Cartilage, 1998. 6(3): p. 187-95.
158.van Susante, J.L., et al., Responsiveness of bovine chondrocytes to growth factors in medium with different serum concentrations. J Orthop Res, 2000. 18(1): p. 68-77.
159.Weiser, L., et al., Effect of serum and platelet-derived growth factor on chondrocytes grown in collagen gels. Tissue Eng, 1999. 5(6): p. 533-44.
160.Smith, P., et al., Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum, 2000. 43(5): p. 1156-64.
161.Goto, H., et al., Gene therapy for meniscal injury: enhanced synthesis of proteoglycan and collagen by meniscal cells transduced with a TGFbeta(1)gene. Osteoarthritis Cartilage, 2000. 8(4): p. 266-71.
162.Goomer, R.S., et al., Nonviral in vivo gene therapy for tissue engineering of articular cartilage and tendon repair. Clin Orthop, 2000(379 Suppl): p. S189-200.
163.van der Kraan, P.M., et al., Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage, 2002. 10(8): p. 631-7.
164.Baume, L.J. and J. Holz, Ontogenesis of the human temporomandibular joint. 2. Development of the temporal components. J Dent Res, 1970. 49(4): p. 864-75.
165.Keith, D.A., Development of the human temporomandibular joint. Br J Oral Surg, 1982. 20(3): p. 217-24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔