|
1.Farrar, W.B. and W.L. McCarty, Jr., The TMJ dilemma. J Ala Dent Assoc, 1979. 63(1): p. 19-26. 2.Milam, S.B., et al., Characterization of the extracellular matrix of the primate temporomandibular joint. J Oral Maxillofac Surg, 1991. 49(4): p. 381-91. 3.Landesberg, R., E. Takeuchi, and J.E. Puzas, Cellular, biochemical and molecular characterization of the bovine temporomandibular joint disc. Arch Oral Biol, 1996. 41(8-9): p. 761-7. 4.Mills, D.K., D.J. Fiandaca, and R.P. Scapino, Morphologic, microscopic, and immunohistochemical investigations into the function of the primate TMJ disc. J Orofac Pain, 1994. 8(2): p. 136-54. 5.Kondoh, T., et al., Regional differences of type II collagen synthesis in the human temporomandibular joint disc: immunolocalization study of carboxy-terminal type II procollagen peptide (chondrocalcin). Arch Oral Biol, 2003. 48(9): p. 621-5. 6.Nakano, T. and P.G. Scott, Changes in the chemical composition of the bovine temporomandibular joint disc with age. Arch Oral Biol, 1996. 41(8-9): p. 845-53. 7.Keith, D.A., Elastin in the bovine mandibular joint. Arch Oral Biol, 1979. 24(3): p. 211-5. 8.Scapino, R.P., et al., The behaviour of collagen fibres in stress relaxation and stress distribution in the jaw-joint disc of rabbits. Arch Oral Biol, 1996. 41(11): p. 1039-52. 9.Humphreys, T., Aggregation of chemically dissociated sponge cells in the absence of protein synthesis. J Exp Zool, 1965. 160(2): p. 235-9. 10.Sayre, F.W., et al., Growth factor studies; changes in reactivity of sulfhydryl groups with activation. Biochim Biophys Acta, 1968. 160(1): p. 63-8. 11.Sharp, H.C., Vasectomy as a means of preventing procreation in defectives. J Am Med Assoc, 1909. 53(23): p. 1897-902. 12.Farrar, W.B., Diagnosis and treatment of anterior dislocation of the articular disc. N Y J Dent, 1971. 41(10): p. 348-51. 13.Wilkes, C.H., Arthrography of the temporomandibular joint in patients with the TMJ pain-dysfunction syndrome. Minn Med, 1978. 61(11): p. 645-52. 14.Dolwick, M.F. and R.R. Riggs, Diagnosis and treatment of internal derangements of the temporomandibular joint. Dent Clin North Am, 1983. 27(3): p. 561-72. 15.Hall, M.B., Meniscoplasty of the displaced temporomandibular joint meniscus without violating the inferior joint space. J Oral Maxillofac Surg, 1984. 42(12): p. 788-92. 16.Dimitroulis, G. and M.F. Dolwick, Temporomandibular disorders. Part 3. Surgical treatment. Aust Dent J, 1996. 41(1): p. 16-20. 17.Dolwick, M.F. and T.B. Aufdemorte, Silicone-induced foreign body reaction and lymphadenopathy after temporomandibular joint arthroplasty. Oral Surg Oral Med Oral Pathol, 1985. 59(5): p. 449-52. 18.Heffez, L., et al., CT evaluation of TMJ disc replacement with a Proplast-Teflon laminate. J Oral Maxillofac Surg, 1987. 45(8): p. 657-65. 19.Kaplan, P.A., et al., Erosive arthritis of the temporomandibular joint caused by Teflon-Proplast implants: plain film features. AJR Am J Roentgenol, 1988. 151(2): p. 337-9. 20.Schellhas, K.P., et al., Permanent Proplast temporomandibular joint implants: MR imaging of destructive complications. AJR Am J Roentgenol, 1988. 151(4): p. 731-5. 21.Chuong, R. and M.A. Piper, Cerebrospinal fluid leak associated with proplast implant removal from the temporomandibular joint. Oral Surg Oral Med Oral Pathol, 1992. 74(4): p. 422-5. 22.Henry, C.H. and L.M. Wolford, Treatment outcomes for temporomandibular joint reconstruction after Proplast-Teflon implant failure. J Oral Maxillofac Surg, 1993. 51(4): p. 352-8; discussion 359-60. 23.Wagner, J.D. and E.L. Mosby, Assessment of Proplast-Teflon disc replacements. J Oral Maxillofac Surg, 1990. 48(11): p. 1140-4. 24.Lieberman, J.M., et al., Dermal grafts of the temporomandibular joint: postoperative appearance on MR images. Radiology, 1990. 176(1): p. 199-203. 25.Lai, W.F., et al., Histological analysis of regeneration of temporomandibular joint discs in rabbits by using a reconstituted collagen template. Int J Oral Maxillofac Surg, 2005. 34(3): p. 311-20. 26.Schumacher, B.L., et al., Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J Orthop Res, 1999. 17(1): p. 110-20. 27.Stockwell, R.A., The cell density of human articular and costal cartilage. J Anat, 1967. 101(4): p. 753-63. 28.Brower, T.D. and W.Y. Hsu, Normal articular cartilage. Clin Orthop, 1969. 64: p. 9-17. 29.Lefebvre, V., et al., SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol, 1997. 17(4): p. 2336-46. 30.de Crombrugghe, B., et al., Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol, 2000. 19(5): p. 389-94. 31.Roach, H.I., New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix. J Bone Miner Res, 1997. 12(5): p. 795-805. 32.Zerega, B., et al., Parathyroid hormone [PTH(1-34)] and parathyroid hormone-related protein [PTHrP(1-34)] promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation of osteoblast-like cells. J Bone Miner Res, 1999. 14(8): p. 1281-9. 33.Aydelotte, M.B. and K.E. Kuettner, Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect Tissue Res, 1988. 18(3): p. 205-22. 34.Aydelotte, M.B., R.R. Greenhill, and K.E. Kuettner, Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res, 1988. 18(3): p. 223-34. 35.Venn, M.F., Chemical composition of human femoral and head cartilage: influence of topographical position and fibrillation. Ann Rheum Dis, 1979. 38(1): p. 57-62. 36.Weiss, C., L. Rosenberg, and A.J. Helfet, An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg Am, 1968. 50(4): p. 663-74. 37.Minns, R.J. and F.S. Steven, The collagen fibril organization in human articular cartilage. J Anat, 1977. 123(2): p. 437-57. 38.Lane, J.M. and C. Weiss, Review of articular cartilage collagen research. Arthritis Rheum, 1975. 18(6): p. 553-62. 39.Akizuki, S., et al., Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res, 1986. 4(4): p. 379-92. 40.Poole, A.R., et al., Contents and distributions of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage. J Orthop Res, 1996. 14(5): p. 681-9. 41.Poole, A.R., et al., Localization of a dermatan sulfate proteoglycan (DS-PGII) in cartilage and the presence of an immunologically related species in other tissues. J Histochem Cytochem, 1986. 34(5): p. 619-25. 42.Keene, D.R., E. Engvall, and R.W. Glanville, Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J Cell Biol, 1988. 107(5): p. 1995-2006. 43.Poole, A.R., et al., Localization of proteoglycan monomer and link protein in the matrix of bovine articular cartilage: An immunohistochemical study. J Histochem Cytochem, 1980. 28(7): p. 621-35. 44.Eyre, D.R., J.J. Wu, and P.E. Woods, The cartilage collagens: structural and metabolic studies. J Rheumatol Suppl, 1991. 27: p. 49-51. 45.Wu, J.J., D.R. Eyre, and H.S. Slayter, Type VI collagen of the intervertebral disc. Biochemical and electron-microscopic characterization of the native protein. Biochem J, 1987. 248(2): p. 373-81. 46.Chang, J. and C.A. Poole, Sequestration of type VI collagen in the pericellular microenvironment of adult chrondrocytes cultured in agarose. Osteoarthritis Cartilage, 1996. 4(4): p. 275-85. 47.Poole, C.A., S. Ayad, and J.R. Schofield, Chondrons from articular cartilage: I. Immunolocalization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J Cell Sci, 1988. 90 ( Pt 4): p. 635-43. 48.Diab, M., J.J. Wu, and D.R. Eyre, Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites. Biochem J, 1996. 314 ( Pt 1): p. 327-32. 49.Wu, J.J., P.E. Woods, and D.R. Eyre, Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem, 1992. 267(32): p. 23007-14. 50.Ichimura, S., J.J. Wu, and D.R. Eyre, Two-dimensional peptide mapping of cross-linked type IX collagen in human cartilage. Arch Biochem Biophys, 2000. 378(1): p. 33-9. 51.Hagg, R., P. Bruckner, and E. Hedbom, Cartilage fibrils of mammals are biochemically heterogeneous: differential distribution of decorin and collagen IX. J Cell Biol, 1998. 142(1): p. 285-94. 52.Poole, C.A., et al., Immunolocalization of type IX collagen in normal and spontaneously osteoarthritic canine tibial cartilage and isolated chondrons. Osteoarthritis Cartilage, 1997. 5(3): p. 191-204. 53.Brewton, R.G., D.W. Wright, and R. Mayne, Structural and functional comparison of type IX collagen-proteoglycan from chicken cartilage and vitreous humor. J Biol Chem, 1991. 266(8): p. 4752-7. 54.Schmid, T.M. and T.F. Linsenmayer, Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol, 1985. 100(2): p. 598-605. 55.Schmid, T.M., R.G. Popp, and T.F. Linsenmayer, Hypertrophic cartilage matrix. Type X collagen, supramolecular assembly, and calcification. Ann N Y Acad Sci, 1990. 580: p. 64-73. 56.Mendler, M., et al., Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol, 1989. 108(1): p. 191-7. 57.Hardingham, T.E. and H. Muir, Hyaluronic acid in cartilage and proteoglycan aggregation. Biochem J, 1974. 139(3): p. 565-81. 58.Schwartz, N.B., et al., Domain organization, genomic structure, evolution, and regulation of expression of the aggrecan gene family. Prog Nucleic Acid Res Mol Biol, 1999. 62: p. 177-225. 59.Watanabe, H., Y. Yamada, and K. Kimata, Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem (Tokyo), 1998. 124(4): p. 687-93. 60.Mow, V.C., et al., The influence of link protein stabilization on the viscometric properties of proteoglycan aggregate solutions. Biochim Biophys Acta, 1989. 992(2): p. 201-8. 61.Asari, A., et al., Localization of hyaluronic acid in human articular cartilage. J Histochem Cytochem, 1994. 42(4): p. 513-22. 62.Rosenberg, L.C., et al., Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages. J Biol Chem, 1985. 260(10): p. 6304-13. 63.Chow, G., et al., Antisense inhibition of chondrocyte CD44 expression leading to cartilage chondrolysis. Arthritis Rheum, 1998. 41(8): p. 1411-9. 64.Mollenhauer, J., et al., Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. J Cell Biol, 1984. 98(4): p. 1572-9. 65.Turnay, J., et al., Collagen binding activity of recombinant and N-terminally modified annexin V (anchorin CII). J Cell Biochem, 1995. 58(2): p. 208-20. 66.Pilar Fernandez, M., et al., The structure of anchorin CII, a collagen binding protein isolated from chondrocyte membrane. J Biol Chem, 1988. 263(12): p. 5921-5. 67.Camper, L., D. Heinegard, and E. Lundgren-Akerlund, Integrin alpha2beta1 is a receptor for the cartilage matrix protein chondroadherin. J Cell Biol, 1997. 138(5): p. 1159-67. 68.Salter, D.M., et al., Integrin-interleukin-4 mechanotransduction pathways in human chondrocytes. Clin Orthop, 2001(391 Suppl): p. S49-60. 69.Saxne, T. and D. Heinegard, Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Br J Rheumatol, 1992. 31(9): p. 583-91. 70.Okimura, A., et al., Enhancement of cartilage matrix protein synthesis in arthritic cartilage. Arthritis Rheum, 1997. 40(6): p. 1029-36. 71.de Bont, L.G., et al., Collagenous network in cartilage of human femoral condyles. A light microscopic and scanning electron microscopic study. Acta Anat (Basel), 1986. 126(1): p. 41-7. 72.Jeffery, A.K., et al., Three-dimensional collagen architecture in bovine articular cartilage. J Bone Joint Surg Br, 1991. 73(5): p. 795-801. 73.Maroudas, A.I., Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature, 1976. 260(5554): p. 808-9. 74.Mankin, H.J. and A.Z. Thrasher, Water content and binding in normal and osteoarthritic human cartilage. J Bone Joint Surg Am, 1975. 57(1): p. 76-80. 75.Linn, F.C. and L. Sokoloff, Movement and Composition of Interstitial Fluid of Cartilage. Arthritis Rheum, 1965. 44: p. 481-94. 76.Lai, W.M., V.C. Mow, and V. Roth, Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J Biomech Eng, 1981. 103(2): p. 61-6. 77.Gray, M.L., et al., Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res, 1988. 6(6): p. 777-92. 78.Gu, W.Y., W.M. Lai, and V.C. Mow, Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J Biomech, 1993. 26(6): p. 709-23. 79.Palmoski, M., E. Perricone, and K.D. Brandt, Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis Rheum, 1979. 22(5): p. 508-17. 80.Hall, A.C., E.R. Horwitz, and R.J. Wilkins, The cellular physiology of articular cartilage. Exp Physiol, 1996. 81(3): p. 535-45. 81.Buckwalter, J.A. and H.J. Mankin, Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect, 1998. 47: p. 477-86. 82.Saklatvala, J., Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature, 1986. 322(6079): p. 547-9. 83.Lotz, M., et al., Cytokine regulation of chondrocyte functions. J Rheumatol Suppl, 1995. 43: p. 104-8. 84.McGuire-Goldring, M.B., et al., In vitro activation of human chondrocytes and synoviocytes by a human interleukin-1-like factor. Arthritis Rheum, 1984. 27(6): p. 654-62. 85.Roughley, P.J., Q. Nguyen, and J.S. Mort, Mechanisms of proteoglycan degradation in human articular cartilage. J Rheumatol Suppl, 1991. 27: p. 52-4. 86.Lotz, M. and P.A. Guerne, Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA). J Biol Chem, 1991. 266(4): p. 2017-20. 87.Mankin, H.J., et al., Growth factors and articular cartilage. J Rheumatol Suppl, 1991. 27: p. 66-7. 88.Osborn, K.D., S.B. Trippel, and H.J. Mankin, Growth factor stimulation of adult articular cartilage. J Orthop Res, 1989. 7(1): p. 35-42. 89.Morovic-Vergles, J., [Pathophysiology of rheumatoid arthritis]. Reumatizam, 2003. 50(2): p. 15-7. 90.Lark, M.W., et al., Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest, 1997. 100(1): p. 93-106. 91.Reboul, P., et al., The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J Clin Invest, 1996. 97(9): p. 2011-9. 92.Brandt, K.D., Effects of nonsteroidal anti-inflammatory drugs on chondrocyte metabolism in vitro and in vivo. Am J Med, 1987. 83(5A): p. 29-34. 93.Pettipher, E.R., et al., Effect of indomethacin on swelling, lymphocyte influx, and cartilage proteoglycan depletion in experimental arthritis. Ann Rheum Dis, 1989. 48(8): p. 623-7. 94.Brittberg, M., et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med, 1994. 331(14): p. 889-95. 95.Leblond, C.P. and B.E. Walker, Renewal of cell populations. Physiol Rev, 1956. 36(2): p. 255-76. 96.Cohen, S., Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem, 1962. 237: p. 1555-62. 97.Carpenter, G. and S. Cohen, Epidermal growth factor. J Biol Chem, 1990. 265(14): p. 7709-12. 98.Heldin, C.H., Structural and functional studies on platelet-derived growth factor. Embo J, 1992. 11(12): p. 4251-9. 99.Betsholtz, C. and E.W. Raines, Platelet-derived growth factor: a key regulator of connective tissue cells in embryogenesis and pathogenesis. Kidney Int, 1997. 51(5): p. 1361-9. 100.Friesel, R.E. and T. Maciag, Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. Faseb J, 1995. 9(10): p. 919-25. 101.Dvorak, H.F., et al., Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol, 1995. 146(5): p. 1029-39. 102.Jeltsch, M., et al., Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science, 1997. 276(5317): p. 1423-5. 103.Munger, J.S., et al., Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int, 1997. 51(5): p. 1376-82. 104.Hanada, T. and A. Yoshimura, Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev, 2002. 13(4-5): p. 413-21. 105.Marshall, C.J., Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 1995. 80(2): p. 179-85. 106.Ihle, J.N., Cytokine receptor signalling. Nature, 1995. 377(6550): p. 591-4. 107.Neer, E.J., Heterotrimeric G proteins: organizers of transmembrane signals. Cell, 1995. 80(2): p. 249-57. 108.Vernon, R.B. and E.H. Sage, Between molecules and morphology. Extracellular matrix and creation of vascular form. Am J Pathol, 1995. 147(4): p. 873-83. 109.Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992. 69(1): p. 11-25. 110.Hunziker, E.B., Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage, 2002. 10(6): p. 432-63. 111.Kawamura, S., et al., Articular cartilage repair. Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand, 1998. 69(1): p. 56-62. 112.Frenkel, S.R., et al., Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Joint Surg Br, 1997. 79(5): p. 831-6. 113.Grande, D.A., et al., The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res, 1989. 7(2): p. 208-18. 114.Grande, D.A., I.J. Singh, and J. Pugh, Healing of experimentally produced lesions in articular cartilage following chondrocyte transplantation. Anat Rec, 1987. 218(2): p. 142-8. 115.Katsube, K., et al., Repair of articular cartilage defects with cultured chondrocytes in Atelocollagen gel. Comparison with cultured chondrocytes in suspension. Arch Orthop Trauma Surg, 2000. 120(3-4): p. 121-7. 116.Nehrer, S., et al., Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials, 1998. 19(24): p. 2313-28. 117.Im, G.I., et al., Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg Br, 2001. 83(2): p. 289-94. 118.Solchaga, L.A., et al., Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res, 1999. 17(2): p. 205-13. 119.Kadiyala, S., et al., Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant, 1997. 6(2): p. 125-34. 120.Lennon, D.P., et al., Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis. Dev Dyn, 2000. 219(1): p. 50-62. 121.Wakitani, S., et al., Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am, 1994. 76(4): p. 579-92. 122.Brandstedt, S., F. Rank, and P.S. Olson, Wound healing and formation of granulation tissue in normal and defibrinogenated rabbits. An experimental model and histological study. Eur Surg Res, 1980. 12(1): p. 12-21. 123.van Hinsbergh, V.W., A. Collen, and P. Koolwijk, Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci, 2001. 936: p. 426-37. 124.Speer, D.P., et al., Enhancement of healing in osteochondral defects by collagen sponge implants. Clin Orthop, 1979(144): p. 326-35. 125.Wakitani, S., et al., Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng, 1998. 4(4): p. 429-44. 126.Ponticiello, M.S., et al., Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res, 2000. 52(2): p. 246-55. 127.Pesakova, V., M. Stol, and M. Adam, Comparison of the influence of gelatine and collagen substrates on growth of chondrocytes. Folia Biol (Praha), 1990. 36(5): p. 264-70. 128.Freed, L.E., et al., Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res, 1993. 27(1): p. 11-23. 129.Martin, I., et al., Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res, 2001. 55(2): p. 229-35. 130.Ruuskanen, M.M., et al., Generation of cartilage from auricular and rib free perichondrial grafts around a self-reinforced polyglycolic acid mould in rabbits. Scand J Plast Reconstr Surg Hand Surg, 1994. 28(2): p. 81-6. 131.Chu, C.R., et al., Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res, 1995. 29(9): p. 1147-54. 132.Chu, C.R., A.Z. Monosov, and D. Amiel, In situ assessment of cell viability within biodegradable polylactic acid polymer matrices. Biomaterials, 1995. 16(18): p. 1381-4. 133.Vunjak-Novakovic, G., et al., Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog, 1998. 14(2): p. 193-202. 134.Freed, L.E., I. Martin, and G. Vunjak-Novakovic, Frontiers in tissue engineering. In vitro modulation of chondrogenesis. Clin Orthop, 1999(367 Suppl): p. S46-58. 135.Goa, K.L. and P. Benfield, Hyaluronic acid. A review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound healing. Drugs, 1994. 47(3): p. 536-66. 136.Knudson, C.B., Hyaluronan receptor-directed assembly of chondrocyte pericellular matrix. J Cell Biol, 1993. 120(3): p. 825-34. 137.Kujawa, M.J., D.A. Carrino, and A.I. Caplan, Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol, 1986. 114(2): p. 519-28. 138.Atala, A., et al., Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J Urol, 1993. 150(2 Pt 2): p. 745-7. 139.Atala, A., et al., Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J Urol, 1994. 152(2 Pt 2): p. 641-3; discussion 644. 140.Diduch, D.R., et al., Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy, 2000. 16(6): p. 571-7. 141.Lahiji, A., et al., Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res, 2000. 51(4): p. 586-95. 142.Suh, J.K. and H.W. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000. 21(24): p. 2589-98. 143.Mattioli-Belmonte, M., et al., N,N-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Med Biol Eng Comput, 1999. 37(1): p. 130-4. 144.Messner, K., Hydroxylapatite supported Dacron plugs for repair of isolated full-thickness osteochondral defects of the rabbit femoral condyle: mechanical and histological evaluations from 6-48 weeks. J Biomed Mater Res, 1993. 27(12): p. 1527-32. 145.Messner, K. and J. Gillquist, Synthetic implants for the repair of osteochondral defects of the medial femoral condyle: a biomechanical and histological evaluation in the rabbit knee. Biomaterials, 1993. 14(7): p. 513-21. 146.Messner, K. and J. Gillquist, Prosthetic replacement of the rabbit medial meniscus. J Biomed Mater Res, 1993. 27(9): p. 1165-73. 147.Hanff, G., et al., Repair of osteochondral defects in the rabbit knee with Gore-Tex (expanded polytetrafluoroethylene). An experimental study. Scand J Plast Reconstr Surg Hand Surg, 1990. 24(3): p. 217-23. 148.Minns, R.J. and M. Flynn, Intra-articular implant of filamentous carbon fibre in the experimental animal. J Bioeng, 1978. 2(3-4): p. 279-86. 149.Minns, R.J., D.S. Muckle, and J.E. Donkin, The repair of osteochondral defects in osteoarthritic rabbit knees by the use of carbon fibre. Biomaterials, 1982. 3(2): p. 81-6. 150.Minns, R.J. and D.S. Muckle, Mechanical and histological response of carbon fibre pads implanted in the rabbit patella. Biomaterials, 1989. 10(4): p. 273-6. 151.Mortier, J. and M. Engelhardt, [Foreign body reaction in carbon fiber prosthesis implantation in the knee joint--case report and review of the literature]. Z Orthop Ihre Grenzgeb, 2000. 138(5): p. 390-4. 152.van Beuningen, H.M., et al., In vivo protection against interleukin-1-induced articular cartilage damage by transforming growth factor-beta 1: age-related differences. Ann Rheum Dis, 1994. 53(9): p. 593-600. 153.Glansbeek, H.L., et al., Bone morphogenetic protein 2 stimulates articular cartilage proteoglycan synthesis in vivo but does not counteract interleukin-1alpha effects on proteoglycan synthesis and content. Arthritis Rheum, 1997. 40(6): p. 1020-8. 154.Glansbeek, H.L., et al., Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints. Lab Invest, 1998. 78(2): p. 133-42. 155.Fortier, L.A., et al., Altered biological activity of equine chondrocytes cultured in a three-dimensional fibrin matrix and supplemented with transforming growth factor beta-1. Am J Vet Res, 1997. 58(1): p. 66-70. 156.Nishida, Y., et al., Osteogenic protein-1 promotes the synthesis and retention of extracellular matrix within bovine articular cartilage and chondrocyte cultures. Osteoarthritis Cartilage, 2000. 8(2): p. 127-36. 157.van Osch, G.J., et al., Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthritis Cartilage, 1998. 6(3): p. 187-95. 158.van Susante, J.L., et al., Responsiveness of bovine chondrocytes to growth factors in medium with different serum concentrations. J Orthop Res, 2000. 18(1): p. 68-77. 159.Weiser, L., et al., Effect of serum and platelet-derived growth factor on chondrocytes grown in collagen gels. Tissue Eng, 1999. 5(6): p. 533-44. 160.Smith, P., et al., Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum, 2000. 43(5): p. 1156-64. 161.Goto, H., et al., Gene therapy for meniscal injury: enhanced synthesis of proteoglycan and collagen by meniscal cells transduced with a TGFbeta(1)gene. Osteoarthritis Cartilage, 2000. 8(4): p. 266-71. 162.Goomer, R.S., et al., Nonviral in vivo gene therapy for tissue engineering of articular cartilage and tendon repair. Clin Orthop, 2000(379 Suppl): p. S189-200. 163.van der Kraan, P.M., et al., Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage, 2002. 10(8): p. 631-7. 164.Baume, L.J. and J. Holz, Ontogenesis of the human temporomandibular joint. 2. Development of the temporal components. J Dent Res, 1970. 49(4): p. 864-75. 165.Keith, D.A., Development of the human temporomandibular joint. Br J Oral Surg, 1982. 20(3): p. 217-24.
|