(54.236.58.220) 您好!臺灣時間:2021/03/09 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪志緯
研究生(外文):Chih-Wei Hung
論文名稱:抗EMI無電鍍銅聚丙烯腈高分子奈米複合材料之製備與研究
論文名稱(外文):The preparation and Investigation of Electroless Copper Deposited Polyacrylontrile (PAN) Nano Composites for EMI ShieldingThe preparation
指導教授:黃繼遠
指導教授(外文):Chi-Yuan Huang
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:103
中文關鍵詞:無電鍍銅電磁波遮蔽奈米
外文關鍵詞:Electroless CopperEMI SENano
相關次數:
  • 被引用被引用:6
  • 點閱點閱:362
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
本研究是藉由高分子表面金屬複合化來達到電磁波遮蔽功能,因此利用無電鍍法(化學鍍法)製備導電聚丙烯腈薄膜作為電磁波遮蔽材以達到電磁波遮蔽功能,並且使Cu31S16化合物析鍍於表面上以及因擴散使銅離子在PAN內部成核為Cu2-xS化合物。另外無電鍍進行前,PAN不須經敏化活化為本實驗之特色。
本實驗是以銅離子濃度與膨潤處理做為影響高分子奈米複合材之抗電磁波遮蔽值(EMI SE)變化的兩大變數。再利用FE-SEM、AFM、HR-TEM、HP-XRD、EDS、DSC等分析,探討表面與截面之微觀型態、奈米顆粒擴散的情形以及熱性質影響等等,而解釋高分子奈米複合材料抗電磁波遮蔽值之變化,另外還對其做抗菌性質的檢測。
由實驗結果顯示,所有試片皆通過ASTM D3359黏著性測試,且在析鍍溫度95℃及析鍍時間1小時,以CuSO4\Na2S2O3\NaHSO3 (2/1/1)組成進行析鍍,電磁波遮蔽值可達到約為18dB~20dB。如果再經過膨潤處理後,聚丙烯腈複合薄膜之電磁波遮蔽值則可達到約為30dB~35dB。由HP-XRD分析得知,聚丙烯腈薄膜在經過無電鍍銅處理後,析鍍上Cu31S16金屬層以及部分因氧化而形成的氧化銅。再經由AFM表面微觀分析發現,原本平整表面的聚丙烯腈薄膜,經過無電鍍處理後,表面變成凹凸不平,因此可以進一步證明銅硫合金已析鍍在聚丙烯腈表面上。從FE-SEM表面以及破斷面圖中可以觀察到析鍍顆粒形狀為不規則形狀以及針狀結構且鍍層厚度最厚約為200nm。藉由EDX、HR-TEM等分析可以發現膨潤處理過後的PAN 薄膜,在進行無電鍍處理後,並使銅離子擴散到基材內部且成核為Cu2-xS,且粒徑約為6 ~ 30nm,主要粒徑則為15 ~ 20nm。而且經過無電鍍處理後的PAN 薄膜,其抗菌效果明顯優於未經過無電鍍處理的PAN 薄膜。
In this investigation, the electroless plating method was used to plate the Cu31S16 and Cu2-xS on the surface and inner of the polyacrylontrile (PAN) for electromagnetic interference (EMI) shielding. In this plating procedure, the PAN film was swollen before electroless plating without sensitizing and activating pretreatment.
Effects of operating parameters, cupric ion concentration and swelling pretreatment on the EMI (Electromagnetic Interference) shielding effectiveness (SE) were investigated. The EMI SE, surface morphology, cross section morphology, particles size inner the substrate, element of the layer and inner the substrate, thermal properties and antibacterial character of nano polymeric composites were detected by EMI, FE-SEM, HP-XRD, HR-TEM with EDX, EDS, DSC, AFM and antibacterial test analyzer, respectively.
Experimental results revealed that the EMI shielding effectiveness of Cu31S16-PAN composites reached 18~20 dB when the plating temperature was 95℃ and plating time was 1 hour with cupric ion 0.48M, However, the EMI shielding effectiveness of composite reached 30~35 dB the PAN was pre-swelled before plating. HP-XRD analysis shows that the Cu31S16 was deposited on the PAN surface after the electroless copper plating procedure. In addition, AFM also shows that the Cu31S16 deposited on the PAN surface obviously. The surface morphology of Cu31S16-PAN and Cu31S16-SPAN were studied by FE-SEM. The grains shapes were likeness irregular and sharp on the substrate surface and the most thickness of the plating layer was about 200 nm. HR-TEM shows that the particles size of Cu2-xS compound distributed from 6 to 30 nm inner the SPAN substrate and the main particles size were about 15 to 20 nm. These nano polymeric composites possessed antibacterial character.
ENGLISH ABSTRACT……………………………………………………………….…Ⅰ
CHINESE ABSTRACT …………………………………………..…………………..…Ш
CONTENTS……………………………………………..……………………………....Ⅴ
LIST OF FIGURES…………………………………..………………………………..…Ⅷ
LIST OF TABLES…………………………………..…………………………………ⅩⅠ

Chapter 1 Introduction…………………………...……………………………..….1
Chapter 2 Theories and Literature Reviews………………………..……..……......4
2.1 Electroless Coating Method……………………………………..………......4
2.1.1 Fundamental Concept of Electroless Plating……………..………….....4
2.1.2 Electroless Baths and Effect of Variables on the Process………..……..8
2.1.3 Plating on Nonconductors………………………………..…………...10
2.2 The Mechanisms of Conductive Polymeric Materials……………..………12
2.2.1. Conductive Mechanism of ICPs…………………………………...13
2.3 Materials for EMI Shielding…………………...………………..…………16
2.3.1 Polymeric Materials…………………………….…………………..17
2.3.2 Polymeric Materials for EMI……………………….………………19
2.3.2.1. Intrinsic Conductive Polymers (ICPs)…………………….19
2.3.2.2. Surface Conductive Materials Coating…………………....21
2.3.2.3. Conductive Fillers Filled Composites……………………..24
2.4 Calculate the EMI Shielding Effectiveness………..…….…………...……25
2.5 Measure Methods of EMI Shielding…………….………..…...…...………27
2.6. Measure Methods of EMI Shielding…………….………….....…..............27
2.6.1 Measurement Methods of Near-Field….…………....….…………27
2.6.1.1. Dual Chamber Method…………..….……...….......….….27
2.6.1.2. Dual TEM Cell…………...….…………….......…...…….28
2.6.2 Measurement Methods of Far-Field...….…………….....………....28
2.6.2.1. Coaxial Transmission Line Method………….....….…….28
2.6.2.2. KEC Method….....….…….....….…….....….…..….....….29
2.6.2.3. Waveguide Method..….…….....….…….....……………..30
2.6.2.4. Free Space Method….....….…….....….....…………........30
Chapter 3 Experimental…………………………...……………………………….42
3.1 Procedure………………..…………………………………………………42
3.2 Characterization…………..………………………………………………..48
3.2.1 EMI SE measurement…………………………………………………48
3.2.2 Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive Spectrometer (EDS) Analysis…………………………….48
3.2.3 High Resolution Transmission Electron Micrographs (HR-TEM) Analysis with EDX…………………………………………………...49
3.2.4 High Power X-ray Diffractionmeter (HP-XRD)………………….......49
3.2.5 Atomic Force Microscope (AFM)…………………………………….50
3.2.6 Differential Scanning Calorimetry……………………………………50
3.2.7 Antibacterial Test……………………………………………………...50
Chapter 4 Results and Discussion………………………….……..…...………...…52
4.1 EMI shielding effectiveness measurement……………..………….………52
4.2 Surface Morphology Analysis by Field Emission Scanning Electron
Microscope (FE-SEM) and Atomic Force Microscope (AFM) …………55
4.3 Composition and Structure Analysis by High Power X-ray Diffractometer (HP-XRD) and Energy Dispersive Spectrometer (EDS)………..………..70
4.4 Cross-section Morphology Observed by Field Emission Scanning Electron Microscope (FE-SEM) ………..……………..……………..…………….74
4.5 Cross-Section morphology observation and element identify by High Resolution Transmission Electron Micrographs (HR-TEM) with EDX…80
4.6 Thermal Properties Analysis by Differential Scanning Calorimetry (DSC).86
4.7 Antibacterial Test……………..…………………………..……..…………90
Chapter 5 Conclusions……………………………………………………………95
References……………..………………………………………………………………97


List of Figures
Figure 2-1 The figure of Electroless copper chemical reaction………………………33
Figure 2-2 Conductivity of Varies Materials………………………………………….33
Figure 2-3 Representation of shielding phenomena for plane wave…………………...34
Figure 2-4 Shielding Effectiveness vs. Electromagnetic Resistivity…………………..34
Figure 2-5 Dual-Chamber Fixture……………………………………………………..35
Figure 2-6 Dual TEM Cell……………………………………………………………..35
Figure 2-7 Flanged Coaxial Circular Transmission Line Holder……………………...35
Figure 2-8 Continuous Coaxial Circular Transmission Line Holder…………………..36
Figure 2-9 Flanged Coaxial Transmission Line Holder, ASTM 4935-99……………...36
Figure 2-10 Test Fixture of KEC Cell…………………………………………………37
Figure 2-11 Configuration of Waveguide Measurement………………………………37
Figure 2-12 Configuration of Free-Space Measurement System……………………...38
Figure 3-1 The chemical structure of PAN molecule……………………………..……44
Figure 3-2 The morphology of PAN powder…………………………………………..44
Figure 3-3 Flowchart of Experimental Procedure. …………………………………..45
Figure 4-1 Effect of cupric ion concentration on EMI SE of Cu31S16-PAN
Composites………………………………………………………………...53
Figure 4-2 Effect of cupric ion concentration on EMI SE of Cu31S16-SPAN
composites……………………………………………………………….53

Figure 4-3 FE-SEM of surface morphology of (a) PAN (b) n0.24M (c) n0.36M (d) n0.48M (e) n0.60M………………………………………………………...57
Figure 4-4 FE-SEM of surface morphology of (a) SPAN (b) s0.24M (c) s0.36M (d) s0.48M (e) s0.60M. ……………………………………………………......58
Figure 4-5 (a) AFM images of PAN film………………………………………………60
Figure 4-5 (b) AFM images of n0.24M………………………………………………61
Figure 4-5 (c) AFM images of n0.36M…………………………………………….…..62
Figure 4-5 (d) AFM images of n0.48M………………………………………………..63
Figure 4-5 (e) AFM images of n0.60M………………………………………………64
Figure 4-6 (a) AFM images of SPAN.……………………………………………...….65
Figure 4-6 (b) AFM images of s0.24M.……………………………...…………….....….66
Figure 4-6 (c) AFM images of s0.36M……………………………………….….....….67
Figure 4-6 (d) AFM images of s0.48M. ……………………………………….…...….68
Figure 4-6 (e) AFM images of s0.60M ……………………………………….…...….69
Figure 4-7 Effect of cupric ion concentration on XRD pattern of Cu31S16-PAN………71
Figure 4-8 Effect of cupric ion concentration on XRD pattern of Cu31S16-SPAN.……72
Figure 4-9 Element analysis of s0.48M by EDS……………………………………….73
Figure 4-10 FE-SEM of cross-section morphology of (a) PAN(upper)(b) PAN(under) (c) n0.24M(upper) (d) n0.24M(under)(e) n0.36M(upper) (f) n0.36M(under) (g) n0.48M(upper)(h) n0.48M(under) (i) n0.60M(upper) (j) n0.60M(under)…76
Figure 4-11 FE-SEM of cross-section morphology of (a) SPAN(upper)(b) SPAN(under)
(c) s0.24M(upper)(d) s0.24M(under) (e) s0.36M(upper) (f) s0.36M(under) (g) s0.48M(upper) (h) s0.48M(under) (i) s0.60M(upper) (j)s0.60M(under)….78
Figure 4-12 High resolution TEM bright image of inner cross-section morphology with diffraction pattern from Cu31S16-PAN (0.48M) composites………….…..82
Figure 4-13 High resolution TEM bright image of inner cross-section morphology with diffraction pattern from Cu31S16-PAN (0.48M) composites…………….82
Figure 4-14 Diameter distribution of nanpparticles………………………………...….83
Figure 4-15 High resolution TEM bright image of cross-section (a) morphology and (b) EDX spectrum…………………………………………………………….84
Figure 4-16 Cu2-xS pattern by JCPD card………………………….…………………….85
Figure 4-17 Cu31S16 pattern by JCPD card……………………………………………….85
Figure 4-18 Differential scanning calorimetry thermogram of the PAN and Cu31S16-APN composites………………………..………………………………………..88
Figure 4-19 Differential scanning calorimetry thermogram of the SPAN and Cu31S16-SAPN composites………………………………………………88
Figure 4-20 Antibacterial tests of PAN film and Cu31S16-PAN composites by OM…...91
Figure 4-21 Antibacterial tests of SPAN film and Cu31S16-SPAN composites by OM..93
List of Tables
Table 1-1: The physical characters of composites material……………………………..3
Table 2-1: Components of electroless metal bath and their functions………………….39
Table 2-2: Reduction procedure of operating temperature and copper ions concentration
(0.06M)………………………………………………………..………….39
Table 2-3: Summary of EMI Shielding Materials………………………..….…………40
Table 2-4: Relationship between SE and Transmission Loss…………………………..41
Table 3-1: Composition and Operating Conditions of Electroless Copper Bath……….46
Table 3-2: Abbreviations of composites………………………………………………..47
Table 4-1: Heat of fusion of PAN and Cu31S16 with or without swelling procedure…...89
1. Idem, IEEE T. Electromagn. C., 30(3), Aug., (1988) 239.
2. K.W. Oh, D.J. Kim, S.H. Kim, “Improved Adhesion Property and Electromagnetic Interference Shielding Effectiveness of Electroless Cu-Plated Layer on Poly(ethylene terephthalate) by Plasma Treatment”, (2001) 1369-1378.
3. E. Valova, J. Dille, S. Armyanov, J. Georgieva, D. Tatchev, M. Marinov, J. L. Delpancke, O. Steenhaut, A. Hubin, “Surface and Coatings Technology”, 190 (2005) 336-344.
4. K.B. Cheng, S. Ramakrishna, K.C. Lee, ”Composites”, 31 (2000) 1039-1045.
5. C.Y. Huang, J.F. Pai, Eur. Polym. J., 34(2), (1998) 261.
6. 王大倫, “實用電鍍學”, 徐氏文教基金會出版, 2002.
7. 尤光先, “電鍍工程學”, 徐氏文教基金會出版, 1999.
8. A. Brenner, G.E. Riddell, J. Res. Natl Inst. Stan, 37, (1946) 1.
9. L.F. Spencer, Met. Finish., 72(10), Oct., (1974) 35.
10. G.O. Mallory, J.B. Hajdu Eds., “Electroless Plating: Fundamentals
and Applications”, American Electroplaters and Surface Finishers Society, 1992.
11. R.P. Tracy, G..J. Shawhan, Mat. Select. Design, July, (1990) 65.
12. R.D. Daniels Mai, H.B. Harpalani, Thin Solid Films, 166, (1988) 235.
13. E.C. Pereira, S. Wolynec, Plat. Surf. Finish., 76(9), (1989) 58.
14. M.A, Trudgeon, J.R. Griffiths, Brit. Corros. J., 21(2), (1986) 113.
15. Lubomyr T. Romankiw, Dennis R. Turner Eds., "Electrodeposition
Technology, Theory and Practice", Electrochemical Soc., Inc., New
Jersey. 1987.
16. S.S. Tzeng, F.Y. Chang, “Materials Science and Engineering”, A 302
(2001) 258-267.
17. W. Lu, V.S. Doncepudi, J. Prakash, J. Liu, K. Amine,
“Electrochimica Acta”, 47 (2002) 1601-1606.
18. C.C. Yang, C.C. Wan, Y.Y. Wang, “Journal of Colloid and Interface Science“, 279 (2004) 433-439.
19. S.M. Pimenoy, G..A. Shafeev, V.I. Konov, E.N. Loubnin, “Diamond and Related Materials”, 5 (1996) 1042-1047.
20. S. D. Yosi Y., D. V. M., “Microelectronic Engineering”, 33 1997 47-58
21. 吳宗蔚,“台灣科技大學碩士論文”, (2002).
22. Ng H. T., Li S. F. Y., Chan L. , Loh F. C., Tan K. L., “Journal of Electrochemistry Society”, 145 (1998) 3301-3305.
23. J. E. A. M. Van der Meerakker, “Journal of Applied Electrochemistry”, 11 (1981) 387-393.
24. D. John, P. Lester, P. Milan, “Journal of Electrochemistry Society”, vol.130, No.4, (1983) 876-880
25. 范雲智,“國防中正理工學院碩士論文”, (2003).
26. G.O. Mallory, J.B. Hajdu Eds., “Electroless Plating: Fundamentals and Applications”, American Electroplaters and Surface Finishers Society, 1992.
27. R. D. Daniels Mai, H.B. Harpalani, “Thin Solid Films”, 166, (1988) 235.
28. H.H. Kuhn, "Anthraquinone-2-Sulfonic Acid Doped Conductive Textiles", US Pat. 5108829, 1992.
29. A.G. MacDiarmid, A.J. Heeger, Synthetic Met., 1, (1980) 101.
30. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B, 22, (1980) 2099.
31. A.R. Bishop, D.K. Campbell, K. Fesser, Mol. Cryst. Liq. Cryst., 77, (1981) 253.
32. J.T. Gammel, J.A. Krumhansl, Phys. Rev. B, 24, (1981) 1035.
33. Y.R. Lin-Liu, K. Maki, Phys. Rev. B, 22, (1980) 5754.
34. M.J. Rice, Phys. Lett. A, 71. (1979) 152.
35. Idem, Phys. Lett. A, 73, (1979) 386.
36. J.L. Brsdas, R.R. Chance, R. Silbey, Phys. Rev. B, 26, (1982) 5841.
37. Y. Tornkiewicz, T.D. Schultz, H.B. Brom, et al., Phys. Rev. B, 24, (1981) 4348.
38. D.D.L. Chung, Carbon, 39(2), (2001) 279.
39. F. Bradish, Conductive Composites for Shielding, SPI, Composites Institute, 33rd Annual Conf., Section 4A, 1979.
40. R. Simon Ed. , “Shielding Through Conductive Plastics”, SPE, New York, ANTEC 1980.
41. C. Christopoulos Ed., Principles and Techniques of Electromagnetic Compatibility, CRC Press, 1995.
42. O. Ishii, M. Senda, K. Takei, T. Mori, Jpn. J. Appl. Phys. Part 2 Lett., 34(n3B), (1995), L359.
43. S.P. Pappas, Ed., “Radiation Curing Science and Technology”, Plenum Press, New York and London 1992.
44. L.W. Shacklette, R.R. Chance, D.M. Ivory, G.G. Miller, R.H. Baughman, Synthetic Met., 1, (1979) 307.
45. G. Street, T. Clarke, M. Kroumbi, K. Kanazawa, V. Lee, P. Fluger, J. Scott, G. Weiser, Mol. Cryst. Liq. Cryst., 83, (1982) 253.
46. Y.S. Kang, H.J. Lee, J. Namgoong, B. Jung, H. Lee, Polymer, 40(9), (1999) 2209.
47. D.C. Liao, K.H. Hsieh, Y.C. Chern, K.S. Ho, Synthetic Met., 87(1), (1997) 61.
48. C.D. Storms, Met. Finish., 81(2), (1983) 47.
49. V.G. Kulkami, W.R. Mathew, C.J. Chapbell, C. J., J. Vinyl. Addit. Techn., 14(2), (1992) 123.
50. K.F. Schoch, Jr.,W.A. Byers, L.J. Buckley, Synthetic Met., 72, (1995) 13.
51. J. Joo, MaeDiarmid and A.J. Epstein, ANTEC, 53, (1995) 1672.
52. D.R.J. White, Michel Mardiguian Eds., “Electromagnetic Shielding”, Interference Control Technologies, Inc. Gainesville, Virginia, 1988.
53. J.C. Huang, Adv. Polym. Tech., 14(2), (1995) 137.
54. P.F. Wilson, M.T. Ma, IEEE T. Electromagn. C., 30(3), (1988) 251.
55. Idem, IEEE T. Electromagn. C., 30(3), Aug., (1988) 239.
56. J.A. Catrysse, M. DeGoeije, W. Steenbakkers, L. Anaf, IEEE T. Electromagn. C., 35(4), (1993) 440.
57. J. Wang, S.S. Cheng, V.V. Varadan, V.K. Varadan, J Wave-Mater. Interact., 10(1), (1995) 61.
58. D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, IEEE T. Instrum. Meas., IM-38(3), (1989) 789.
59. C.Y. Hung, W.W. Mo, M.L. Roan, “Surface and Coatings Technology”, Vol. 184, Issue:2-3 pp. 123-132, (2004).
60. 莫文偉,“大同大學博士論文” (2002).
61. C.Y. Hung, J.F. Pai, J. Appl. Polym. Sci. 63 (1997) 115.
62. ASTM D4935-99, "Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials," American Society for Testing and Materials, West Conshohocken, PA, 1999.
63. Y.K. Hong, C.Y. Lee, C.K. Jeong, D.E. Lee, K. Kim, and J. Joo, “Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges”, Oct. (2002).
64. Ade Ogunsola, “Harmonization of Shielding-Effectivness Standards
for Enclosures”, (2001).
65. W.M. Arnold, P. Harris, C.A. Partridge, M.K. Andrews, IEEE Annu. Report–Conf. on Electrical Insulation and Dielectric Phenomena, San Francisco, (1996) 20.
66. C.Y. Hung, W.W. Mo, M.L. Roan, ”Surface and Coatings Technology”, 184 (2004) 163-169.
67. P.B. Jana, A.K. Mallick, S.K. De, ”IEEE Transactions on Electromagnetic Compatibility”, 34 (1992) 4.
68. 鄭銘章,“大同大學碩士論文” (2003).
69. S. Deng, R. Bai, and J.P. Chen, “Journal of Colloid and Interface
Science”, Vol. 260, Issue 2 (2003) 265-272.
70. C.Y. Lee, D.E. Lee, J. Joo, M.S. Kim, J.Y. Lee, S.H. Jeong, S.W. Byun, “Synthetic Metals”, 119 (2001) 429-430.
71. E.G. Han, E.A. Kim, K.W. Oh, “Synthetic Metals”, 123 (2001) 469-476.
72. S. K. Chiu, J.Y. Cheng, W. S. Jou, G. J. Jong, S. C. Wang, ”Electronic Components and Technology Conference”, 2001
73. S. Shukla, S. Seal, Z. Rahaman, K. Scammon, “Materials Letters”, 57
(2002) 151-156.
74. R. Zhang, L. Gao, J. Guo, “Surface and Coatings Technology”, 166
(2003) 67-71.
75. W.H. Lin, H.F. Chang, “Surface and Coatings Technology”, 107
(1998) 48-54.
76. C.Y. Huang, J. F. Pai, “Eur. Polym. J.”, 2 (1998) 261-267.
77. P.B. Jana, A.K. Mallick, S.K. De, “Electromagnetic Interference Shielding by Carbon Fibre-Filled Polychloroprene Rubber Composites”, (1991).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔