(3.239.192.241) 您好!臺灣時間:2021/03/02 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:尤明道
研究生(外文):Ming-tlau Yu
論文名稱:以Pechini法製備o-LiMnO2正極材料及其特性研究
論文名稱(外文):The Preparation and Characterization of the Pechini Method Derived o-LiMnO2 Cathode Materials
指導教授:吳溪煌
指導教授(外文):She-huang Wu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:111
中文關鍵詞:鋰離子電池斜方晶鋰錳氧溶膠凝膠法
外文關鍵詞:lithium ion batteriesorthorhombic LiMnO2sol-gel method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以Pechini法合成前驅物,在氮氣氣氛中經700至900 ℃之熱處理以製備出含不同Li/Mn比之斜方晶LiMnO2正極粉末,探討前驅物中的碳含量對結晶結構及循環充放電表現之影響。以離位XRD、循環充放電及循環伏安之結果研究熱處裡條件與結晶結構及電化學特性之關係。結果顯示,以Li/Mn比為1.05之前驅物經300 ℃空氣中煆燒6小時,於氮氣中經800 ℃熱處理15小時所製備之粉末具最佳之循環充放電表現。上述粉末經20圈循環充放電後,具最大電容量158 mAh/g,由第20至第80圈間之比電容量衰退率小於3 %。由循環充放電曲線、循環伏安測試結果之氧化還原峰、及經不同圈數充放電後之正極材料與在第15圈不同充電電位時持壓之離位XRD圖譜,可觀察出o-LiMnO2相轉變成類尖晶石相(spinel-like)。這種相變化抑制了Jahn-Teller效應,所以合成之o-LiMnO2正極材料在2.5至4.3 V間循環充放電80圈時,具極低之比電容量衰退率。
Orthorhombic LiMnO2 cathode powders with various Li/Mn molar ratios were prepared via a Pechini route followed by heat-treating at temperatures between 700 and 900 oC under nitrogen atmosphere. The influences of the residual carbon in the calcined precursor on the crystalline structure and the charge/discharge cycling performance of the prepared powders were studied. The effects of heat-treatment conditions on the crystalline structure and the electrochemical properties were also investigated with XRD, capacity retention study, and cyclic voltammetry. It is found that the sample prepared with starting Li/Mn ratio of 1.05 followed by calcination at 300 oC for 6 hr under air atmosphere and heat-treatment at 800 oC for 15 hr under nitrogen atmosphere shows the best cycling performance among the prepared powders. This sample shows the maximum discharge capacity of 158 mAh/g at 20th cycle and capacity loss of 3% between 20th and 80th cycles at 30 oC. From the variation of charge/discharge curves and the redox peaks on the cyclic voltammogram for each cycle, the observation of ex-situ XRD patterns of the cathodes cycled for various cycles and those charged to various potentials during the 15th cycle, it was found that o-LiMnO2 transforms into spinel-like phase as that suggested previously. It is the transformation that supresses the Jahn-Teller effect, thus the sample exhibited very low capacity loss as it was cycled between 2.5 and 4.3 V for 80 cycles.
Contents
Abstract 1
Contents 4
Chapter 1 Introduction 12
Chapter 2 Literature Review 14
2-1 The Development of Secondary Li Batteries 14
2-1-1 The Anode Materials 15
2-1-2 The Electrolytes 18
2-1-3 Cathode Materials 20
2-2 The Structures and Electrochemical Properties of LiMnO2 24
2-3 Synthesis of Orthorhombic LiMnO2 26
2-4 Cyclic Voltammetry, CV 28
Chapter 3 Experimental 31
3-1 Powder Preparation 31
3-1-1 Preparation of Stock Solutions 31
3-1-2 Synthesis of LiMnO2-based Powders 31
3-2 Powder Characterization 33
3-2-1 Thermal Analysis 33
3-2-2 Carbon Content Analysis 33
3-2-3 XRD Analysis and Lattice Constant Determination 33
3-2-4 Scanning Electron Microscope Analysis (SEM) 35
3-3 Assembly of Test Cells 35
3-4 Characterization of Electrochemical Properties 38
3-4-1 Cyclic Voltammetry, CV 38
3-4-2 Capacity Retention Study 38
3-5 Ex-situ XRD Studies Upon Cycling 38
Chapter 4 Results and Discussion 40
4-1 Thermal Analysis for LiMnO2 Precursors 40
4-2 Effects of Heat Treating Conditions 40
4-2-1 Effects of Precursor Carbon Content 41
4-2-2 Effects of Heat-Treatment Temperature 42
4-2-3 Effects of Heat-Treatment Duration 46
4-3 The Effects of Li/Mn Ratio 47
4-4 Phase Transformation Upon Cycling 49
Chapter 5 Conclusion 53
Chapter 6 References 54


Table List
Table 2-1 The physical and chemistry character of anode used in lithium ion batteries. 66
Table 2-2 Ionic conductivity of some 1M organic liquid electrolytes used in secondary lithium battery systems (Conductivities at oC, mS/cm) 67
Table 2-3 The physical properties of common used electrolyte solvent. 68
Table 3-1 Instruments used in the experiments 69
Table 3-2 Chemicals used in the experiments 70
Table 4-1 Lattice parameters, relative lattice parameters, and unit cell volume of the samples prepared at various heat-treatment temperature samples. The relative lattice parameters were calculated respect to the value from JCPDS card. 70
Table 4-2 The compositions of the various temperature heat-treated samples. 72
Table 4-3 Refined crystallographic parameter for o-LiMnO2. 72
Table 4-4 The compositons of the 800 oC 15 hr heat-treated powders prepared form precursors with various Li / Mn molar ratios. 73


Figure List
Fig. 2-1 The illustration of the intercalation reaction:(a) no reaction, (b) extraction reaction, (c) intercalation. 75
Fig. 2-2 Passive film formed on anode. 76
Fig. 2-3 The structure of graphite. 77
Fig. 2-4 The relationship of graphite average layer distance and charge capacity. 78
Fig. 2-5 Structure of layer LiCoO2. 79
Fig. 2-6 Structure of orthorhombic LiMnO2 80
Fig. 2-7 Phase occurrence in annealing products obtained from mixtures of O-LiMnO2 and Li2CO3 at different temperatures between 950 and 1025 °C for 1.5 to 2 hr in a N2 purged steel tube. 81
Fig. 3-1 Flow chart for Pechini method synthetic LiMnO2 powders. 82
Fig. 3-2 Flow chart for powders characteristic analytic. 83
Fig. 3-3 Structure of coin cell. 84
Fig. 4-1 The TGA/DTA curves for the LiMnO2 precursor recorded over thetemperature range from ambient to 1000 oC at a heating rate of 5 oC/min under flowing air or nitrogen. The gas flow rate is 1000mL/min. 85
Fig. 4-2 Variation of carbon content profile in the calcined LiMnO2 precursors with duration of calcinatiob at 300 oC under air atmosphere. 86
Fig. 4-3 The XRD patterns of the powder prepared by calcinition at 300 oC under air atmosphere for various hr, and followed by heat-treatment at 800 oC under nitrogen atmosphere for 15 hr. 87
Fig. 4-4 The results of capacity retention study for o-LiMnO2 samples prepared by calcinition at 300 oC under air atmosphere. The cells were cycled with C/10 rate between 2.5 and 4.3 V at 30 oC. 88
Fig. 4-5 The XRD patterns of the powders prepared by calcined at 300 oC for 6 hr and then heat-treated at various temperatures under nitrogen for 15 hr. 89
Fig. 4-6 The variation of the crystallinity with heat-treatment temperature for the powders prepared at various temperatures for 15 hr. 90
Fig. 4-7 The variation of the lattice dimensions with heat-treatment temperature for powders prepared at various temperatures for 15 hr. 91
Fig. 4-8 The variation of the unit cell volume with heat-treatment temperature for powders prepared at various temperatures for 15 hr. 92
Fig. 4-9 SEM photographs of heat-treated at (A) 700 oC, (B) 750 oC, (C) 800 oC, and (D) 900 oC for 15hr prepared LiMnO2 powders. 93
Fig. 4-10 The plot of specific charge / discharge capacity vs. number of cycles with C/10 rate and cutoff voltages of 2.5 and 4.3 V at 30 oC for the powders heat-treated at various temperature for 15 hr. 94
Fig. 4-11 The results of the capacity retention study performed with C/10 rate,cutoff voltages of 2.5 and 4.3 V at 30 oC for the samples prepared at 800 oC for 15 hr. 95
Fig. 4-12 X-ray diffraction patterns of the powder which was calcined for 6 hr and then heat-treated at 800 oC under nitrogen atmosphere for various hr. 96
Fig. 4-13 The effect of heat-treatment duration on the crystallinity of the 800 oC prepared powders. 97
Fig. 4-14 Variation of the lattice dimensions with heat-treatment time for powders prepared at 800 oC for various time. 98
Fig. 4-15 Variation of the unit cell volume with heat-treatment holding time for powders prepared at 800 oCfor various hr. 99
Fig. 4-16 Refined crystallographic parameter for o-LiMnO2 …………..99
Fig. 4-17 SEM photographs of heat-treated at 800 oC for (A) 10 hr, (B) 12 hr, (C) 15 hr, and (D) 20 hr prepared LiMnO2 powders. 100
Fig. 4-18 The plot of specific charge (filled) / discharge(closed) capacity vs. number of cycles with C/10 rate and cutoff voltages of 2.5 and 4.3 V at 30 oC for the powders heat-treated at 800 oC for various times. 102
Fig. 4-19 The XRD patterns of the powder which has different Li/ Mn ratio calcined for 6 hr in air and then heat-treated at 800 oC under nitrogen atmosphere for 15 hr. 103
Fig. 4-20 Variation of potential with state of initial charge/discharge at C/10 for different Li/Mn = 1.2 o-LiMnO2prepared at 800 oC for 15 hr.104
Fig. 4-21 Variation of potential with state of initial charge/discharge at C/10 for different Li/Mn ratio o-LiMnO2 prepared at 800 oC for 15 hr. 105
Fig. 4-22 The plot of specific charge / discharge capacity vs. number of cycles with C/10 rate and cutoff voltages of 2.5 and 4.3 V at 30 oC for the various Li/ Mn ratio powders heat-treated at 800 oC for 15 hr. 106
Fig. 4-23 Variation of potential with state of charge/discharge on cycling at C/10 for o-LiMnO2 prepared at 800 oC for 15 hr. 107
Fig. 4-24 The cyclic voltammograms performed with various cycles at 0.1mV/s scan rates for the 3-electrode cell with LiMnO2 cathode powder preparedat 800 oC for 15 hr. 108
Fig. 4-25 The ex-situ XRD pattern of samples prepared at 800 oC for 15 hr after various cycles. .………………………………………………..109
Fig. 4-26 The ex-situ XRD patterns of 800 oC prepared samples charge to various potential at 15th cycle. 110
Fig. 4-27 Variation of cubic lattice parameter of spinel-like Li1-xMnO2 cathode with voltage at which ex-situ cell was quasi-equilibrated during the 15th cycle. 111
1.J. M. Tarascon, M. D. Guyomard. J. Electrochem. Soc. 139 (1991) 2864.
2.M. M. Thackeray, P. J. Johnson, L. A. De Picciotto, P. G. Bruce, J. B. Goodenough, Mater. Res. Bull. 19 (1984) 179.
3.T. Ohzuku, M. Kitagawa, T. Hirai, J. Electrochem. Soc. 137 (1990) 769.
4.J. M. Tarascon, D. Guyomard, Electrochim. Acta 38 (1993) 1121.
5.F. Nobili, F. Croce, B. Scrosati, R. Marassi, Chem. Mater. 13 (2001) 1642.
6.J. Ying, C. Wan, C. Jiang, Y. Li, J. Power Sources 99 (2001)78.
7.P. Periasamy, H. S. Kim, S. H. Na, S. I. Moon, J. C. Lee, J. Power Sources, 132 (2004) 213.
8.N. Yabuuchi, T. Ohzuku, J. Power Sources, 119-121 (2003) 171.
9.I. Belharouak, Y. K. Sun, J. Liu, K. Amine, J. Power Sources 123 (2003) 247.
10.K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997)1188.
11.I. J. Davidson, R. S. McMillan, J. J. Murray, J. E. Greedan, J. Power Sources 54 (1995) 232.
12.A. J. Paterson, A. D. Robertson, P. G. Bruce, Electrochem. and Solid-State Lett. 7 (2004) A331.
13.M. Wu, Q. Zhang, H. Lu, A. Chen. Solid State Ionics 169 (2004) 47.
14.P. G. Bruce, Chem. Commun. (1997) 1817.
15.M. M. Thackeray, Prog. Solid State Chem. 25 (1997) 1.
16.A. R. Armstrong, N. Dupre, A. J. Paterson, C. P. Grey, P. G. Bruce, Chem. Mater. 16 (2004) 3106.
17.Y. I. Jang, B. Huang, H. Wang, D. R. Sadoway, Y. M. Chiang, J. Electrochem. Soc. 146 (9) (1999) 3217.
18.D. W. Murphy, Mater. Res. Bull. 13 (1978) 1395.
19.M. S. Whittingham, “Intercalation Chemistry” M. S. Whittinghamand, A. J. Jacobson, Edited, Academic Press, 1 (1982).
20.M. Armand, “Materials for Advanced Batteries”, D. W. Murphy, J. Broadhead, B. C. H. Steels, Eds, Plenum Press, New York, 145 (1980).
21.Vanderspurt, H. Thomas, Taylor, D. Paul, U. S. Patents 4, 190,620 (1980).
22.T. Nagaura, K. Tazawa, Prog. Batteries Solar Cells 9 (1990) 20.
23.E. Peled, “Lithium Batteries”, J. Gabano, Eds., Academic Press, Inc. 43 (1983).
24.E. Kunihiko, N. Tatsuya, H. Hitomi, S. Toshihide, I. Makiko. Jpn. Kokai Tokkyo Koho (2005) 23.
25.N. Hiroe, I. Tokuo, N. Toshiyuki, Jpn. Kokai Tokkyo Koho (2004) 21.
26.T. Osaki, Abstract of 34th Battery Symposium, Japan, (1993) 79.
27.E. Buiel, J. R. Dahn, J. Electrochem. Soc. 145 (1998) 1977.
28.A. Robert, Huggins, J. Power Sources 81–82 (1999) 13.
29.J. O. Besenhard, P. Komenda, A. Paxinos, E. Wudy, M. Josowicz, Solid State Ionics 18-19 (1986) 823.
30.M. Winter, J. O. Besenhard, Electrochimi. Acta, 45 (1999) 31.
31.Y. Liu, T. Matsumura, N. Imanishi, T. Ichikawa, A. Hirano, Y. Takeda, Electrochem. Comm. 6 (2004) 632.
32.D. C. S. Souza, V. Pralong, A. J. Jacobson, L. F. Nazar, Science 296 (2002) 2012.
33.K. D. Kepler, J. T. Vauhey, M. M. Thackeray, Solid State Lett. 2 (1999) 307.
34.D. Wang, H. Li, S. Shi, X. Huang, L. Chen, Electrochimi. Acta 50 (2005) 2955-2958.
35.I. A. Courtney, J. R. Dahn, J. Electrochem. Soc. 144 (1997) 2045.
36.T. Shodai, S. Okada, S. Tobishima, J. Yamaki, J. Power Sources, 68 (1997) 515.
37.T. Shodai, Y. Sakurai, T. Suzuki, Solid State Ionics, 122 (1999) 85.
38.Y. M. Kang, S. C. Park, Y. S. Kang, P. S. Lee, J. Y. Lee, Solid State Ionics 156 (2003) 263.
39.R. Alcantara, J. L. Tirado, J. C. Jumas, L. Monconduit, J. Olivier-Fourcade, J. Power Sources 109 (2002) 308.
40.M. M. Thackeray, J. T. Vaughey, A. J. Kahaian, K. D. Kepler, R. Benedek, Electrochem. Commun. 1 (1999) 111.
41.Y. M. Lee, J. E. Seo, N. S. Choi, J. K. Park, Electrochimi. Acta 50 (2005) 2843.
42.J. Jiang, J. R. Dahn, Electrochem. Comm. 6 (2004) 724.
43.P. E. Stallworth, J. J. Fontanella, M. C. Wintersgill, C. D. Scheidler, J. J. Immel, S. G. Greenbaum, A. S. Gozdz, J. Power Sources 81-82 (1999) 739.
44.S. S. Zhang, K. Xu, T. R. Jow, J. Solid State Electrochem. 7 (2003) 147.
45.G. Blomgren, “Nonaqueous Electrochemistry” D. Aurbach, Ed., Marcel Dekker, N. J.(1999) Chapter 2, p.53.
46.H. J. Gores, J. Barthal, J. Solution Chem. 9 (1980) 939.
47.Y. Matsuda, J. Power Sources 19 (1987) 20.
48.J. T. Dudeley. D. P. Wilkinson, G. Thomas, R. L. Vae, W. H. Blom, C. Horvath, M. W. Juzkow, B. Denis, P. Juric, P. Aghakinan, J. R. Dahn, J. Power sources 35 (1991) 59.
49.R. G. Elly, P. J. Moran, J. Electrochem. Soc. 134 (1987) 25.
50.P. J. Gellings, H. J. M. Bouwmeester, “The CRC Handbook of Solid State Electrochem.”, Chap.6. p207.
51.P. G. Bruce, Solid State Chem. 120 (1995) 32.
52.M. B. Rmand, M. J. Duclot, P. Rigaud, Solid State Ionics 3-4 (1981) 429.
53.F. Yuan, H. Z. Chen, H. Y. Yang, H. Y. Li, M. Wang, Materials Chem. and Phys. 89 (2004) 390.
54.H. J Prman, P. J. Wiseman, Acta. Cryst. 40 (1984) 12.
55.J. R. Dahn, S. U. Von, M. W. Juzkow, H. A. Janaby, J Electrochem. Soc.138 (1991) 2207.
56.F. K. Shokooki, J. M. Tarascon, D. Guyomard, Progress in Battery & Battery Materials 14 (1995) 199.
57.K. Kubo, M. Fujiwara, S. Yamada, S. Yamada, S. Arai, M. Kanda, J. Power Sources, 68 (1997) 553.
58.H. Arai, M. Tsuda, Y. Sakurai, J. Power Sources 90 (2000) 76.
59.J. R. Dahn , E. W. Fuller, M. Obrovac, U. von Sacken, Solid State Ionics 69 (1994) 265.
60.J. Molenda, P. Wilk, Marzec, Solid State Ionics 146 (2002) 73.
61.C. Delmas, I. Saadoune, A. Rougier, J. Power Sources 43/44 (1993) 595.
62.E. Zhecheva, R. Stoyanova, Solid State Ionics 66 (1993) 143.
63.I. Saadoune, A. Rougier, P. Gravereau, P. Willmann, C. Delmas, Solid State Ionics 90 (1996) 83.
64.S. Gopukumar, K.Y. Chung, K. B. Kim, , Electrochimica. Acta 49 (2004) 803.
65.Y. Makimura, T. Ohzuku, J. Power Sources 119-121 (2003) 156.
66.Y. Makimura, T. Ohzuku, Chem. Lett. 8 (2001) 744.
67.Y. Naoaki, T. Ohzuku, J. Power Sources 119–121 (2003) 171.
68.M. H. Lee, Y. J. Kang, S. T. Myung, Y. K. Sun, Electrochimi. Acta 50 (2004) 939.
69.Y. M. Todorov, K. Numata, Electrochimi. Acta 50 (2004) 495.
70.F. Lubin, A. Lecert, M. Broussely, J. Labat, J. Power Sources 34 (1991) 161.
71.P. Endres, B. Fuchs, S. Kemmler-Sack, K. Brandt, G. Faust-Becker, H. W. Praas, Solid State Ionics 89 (1996) 221.
72. M. M. Thackeray, J. Power Sources 68 (1997) 153.
73. M. M. Thackeray, J. Electrochem. Soc. 144(5) (1997) 100.
74. Y. Xia, M. Yoshio, J. Power Sources 66 (1997) 129.
75. H. Berg, O. Bergstrom, T. Gustafsson, E. M. Kelder, J. O. Thomas, J. Power Sources 68 (1997) 24.
76. M. R. Mancini, L. Petrucci, F. Ronci, P. P. Prosini, S. Passerini, J. Power Sources 76 (1998) 91.
77.P. Arora, B. N. Popov, R. E. White, J. Electrochem. Soc. 145 (1998) 807.
78.L. Feng, Y. Chang, L. Wu, T. Lu, J. Power Sources 63 (1996) 149.
79.J. Hunter, J. Solid State Chem. 39 (1981) 142.
80.H. M. Wu, J. P. Tu, Y. F. Yuan, Y. Li, X. B. Zhao, G. S. Cao, Scripta Materialia 52 (2005) 513.
81.L. F. Wang, C. C. Ou, K. A. Striebel, J. S. Chen, J. Electrochem. Soc. 150 (2003) A905.
82.B. L. He, S. J. Bao, Y. Y. Liang, W. J. Zhou, H. Li, H. L. Li, J. Solid State Chem. 178 (2005) 897.
83.T. Tsuji, H. Umakoshi, Y. Yamamura, J. Phys. and Chem. Solids 66 (2005) 283.
84.Y. J. Wei, L. Y. Yan, C. Z. Wang, X. G. Xu, F. Wu, G. Chen, J. Phys. Chem. B 108 (2004) 18547.
85.S. H. Park, K. S. Park, S. S. Moon, Y. K. Sun, K. S. Nahm, J. Power Sources 92 (2001) 244.
86.R. J. Gummow, D. C. Liles, M. M. Thackeray, Mater. Res. Bull. 28 (1993) 1249.
87.J. Cho, Chem. Mater. 13 (2001) 4537.
88.J. M. Kim, H. T. Chung, J. Power Sources 115 (2003) 125.
89.A. R. Armstrong, N. P. Dupre, A. J. C. P. Grey, P. G. Bruce, Chem. Mater. 16 (2004) 3106.
90.M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough, P. Grober, Mater. Res. Bull., 20 (1985) 1137.
91.J. M. Tarason, D. Guyomard, Electrochimi. Acta 38 (1993) 1221.
92.A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.
93.N. Ravet, J. B. Goodenough, S. Beesner, M. Simoneau, P. Hovinton, M. Armand, 196th ECS meeting (1999) 362.
94.H. T. Chung, S. K. Jang, H. W. Ryu, K. B. Shim, Solid State Comm. 131 (2004) 549.
95.S. L. Bewlay, K. Konstantinov, G. X. Wang, S. X. Dou, H. K. Liu, Mater. Lett. 58 (2004) 1788.
96.D. Wang, H. Li, S. Shi, X. Huang, L. Chen, Electrochimi. Acta 50 (2005) 2955.
97.X. D. Li, W. S. Yang, S. C. Zhang, D. G. Evans, X. Duan, Solid State Ionics 176 (2005) 803.
98.B. Ammundsen, J. Desilvestro, T. Groutso, D. Hassell, J. B. Metson, E. Regan, R. Steiner, P. J. Pickering, J. Electrochem. Soc. 147 (2000) 4078.
99.M. Tabuchi, K. Ado, H. Kobayashi, H. Kageyama, C. Masquelier, A. Kondo, R. Kanno, J. Electrochem. Soc. 145 (1998) L49.
100.F. Capitaine, P. Gravereau, C. Delmas, Solid state Ionics 89 (1996)197.
101.A. R. Armstrong, P. G. Bruce, Nature 381 (1996) 499.
102.B. Ammundsen, “Science and Technology of Lithium Batteries”, Kluwer Academic Publishers. (2003) p338.
103.G. Ceder, S. K. Mishra, Electrochem. Solid State Lett. 2 (1999) A78.
104.Y. I. Jang, Y. M. Chiang, Solid State Ionics 130 (2000) 53–59.
105.R. J. Gummow, D. C. Liles, M. M. Thackeray, Mater. Res. Bull. 28 (1993) 1249.
106.Ìirts Vîtiòð, Dr. Chem. Thesis (1999), Inst. of Solid State Physics, University of Latvia.
107.I. J. Davidson, R. S. McMillan, I. J. Murray, J. E. Greedan, J. Power Sources 54 (1995) 232.
108.L. Croguennec, P. Deniard, R. Brec, A. Lecerf, J. Mater. Chem. 5(1995) 1919.
109.L. Croguennec, P. Deniard, R. Brec, P. Biensan, M. Broussely, Solid State Ionics 89 (1996) 127.
110.L. Croguennec, P. Deniard, R. Brec, A. Lecerf, J. Mater. Chem. 7 (1997) 1919.
111.Y. I. Jang, B. Huang, H. Wang, D. R. Sadoway, Y. M. Chiang, 194th ECS Meeting Vol. MA 98 (1998) 132.
112.T. Ozuku, A Ueda, T, Hirai, Chem. Express 7 (1992) 193.
113.I. N. Reimers, E. W. Fuller, E. Rossen, J. R. Dahn, J. Electrochem. Soc. 140 (1993) 3396.
114.Z. P. Guo, K. Konstantinov, G. X. Wang, H. K. Liu, S. X. Dou J. Power Sources 119–121 (2003) 221.
115.Z. P. Guo, Z. S. Zhong, G. X. Wang, G. Walter, H. K. Liu, S. X. Dou J. Electrochem. Soc. 149 (2002) A792.
116.C. H. Lu, H. C. Wang, J. Euro. Ceram. Soc. 24 (2004) 717.
117.S. H. Wu, H. J. Su, Mater. Chem. Phys. 78 (2002) 189.
118.S. H. Wu, H. L. Chen, J. Power Sources 119-121(2003) 134.
119.A. J. Paterson, A. R. Armstrong, P. G. Bruce, J. Electrochem. Soc. 151 (2004) A1552.
120.C. S Johnson, M. M. Thackeray, Pro. Electrochem. Soc. 2000-36 (2001) 47.
121.K. West, G. Vitins, R. Koksbang, Electrochimi. Acta 45 (2000) 3141.
122.L. Croguennec, P. Deniard, R. Brec, P. Biensan, M. Broussely, Solid State Ionics 89(1996) 127.
123.Y. S. Lee, Y. K. Sun, K. Adachi, M. Yoshio, Electrochimi. Acta 48 (2003) 1031.
124.Y. I. Jang, F. C. Chou, B. Huang, D. R. Sadoway, Y. M. Chiang,
J. Phys. and Chem. Solids 64 (2003) 2525.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔