(3.237.97.64) 您好!臺灣時間:2021/03/05 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳偉民
研究生(外文):Wei-Min Wu
論文名稱:基材種類對射頻電漿輔助化學氣相沉積法沉積碳膜之影響
論文名稱(外文):The Effect of Substrate Types on the Carbon Films Synthesized by RF Plasma Enhanced Chemical Vapor Deposition
指導教授:曾信雄曾信雄引用關係
指導教授(外文):Shinn-Shyong Tzeng
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:122
中文關鍵詞:類鑽碳膜射頻電漿輔助化學氣相沉積法基材影響
外文關鍵詞:diamond-like carbon filmsPECVDsubstrate effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討基材對於射頻電漿輔助化學氣相沉積法所沉積碳膜結構與性質的影響。使用的基材有四種分別為:P型矽晶片(100)、玻璃、平面拋光氧化鋁以及鏡面拋光氧化鋁基材。使用甲烷作為碳源氣氛,固定流量以及工作壓力,提供四種電漿功率以產生不同自偏壓(-157 V、- 403 V、- 500 V、- 590 V)的製程條件下沉積碳膜。實驗結果顯示,碳膜沉積率於四種基材上皆呈現隨偏壓增加而提高的趨勢;此外,於矽晶片及玻璃基材上所沉積碳膜膜厚亦隨偏壓提高而增厚。沉積後碳膜表面形貌與粗糙度則由原子力顯微鏡掃描矽晶片、玻璃基材以及平拋、鏡拋氧化鋁表面凸區,並利用光學顯微鏡觀察平拋、鏡拋氧化鋁表面形貌,且使用α-step量取整體粗糙度,以及利用SEM拍攝試片橫截面以觀察碳膜成長機制。再者,利用奈米壓痕系統於碳膜表面横向移動獲得摩擦係數。結果顯示,隨著碳膜沉積量的增加,摩擦係數受到基材表面粗糙度影響減小。碳膜結構由拉曼光譜分析與傅立葉轉換紅外光譜獲得。由拉曼光譜結果顯示,於矽晶片及玻璃基材在偏壓- 403 V到- 590 V可獲得類鑽碳膜,在偏壓- 157 V為類高分子膜。在氧化鋁基材部分,碳膜於沉積過程因平拋與鏡拋氧化鋁表面不同的表面形貌而有不同的成長機制,此機制影響所測得碳膜拉曼結果。由紅外光譜C-H彎曲及伸縮振動吸收峰強度可知,碳膜表面C-H鍵結比例隨偏壓增加而減少。另一方面,利用奈米壓痕系統量測碳膜表面硬度可知,於矽晶片及玻璃基材在偏壓- 403 V到- 590 V沉積碳膜硬度在15~20GPa,在定義類鑽碳膜硬度範圍間,且於矽晶片上可得最大硬度;而隨著探針壓入碳膜深度增加,所量得硬度趨近基材硬度。最後,使用UV-Vis光譜儀觀察於玻璃基材上碳膜的光學穿透性。
This research investigated the effect of substrate types on the carbon films synthesized by RF plasma enhanced chemical vapor deposition. Four different substrates, silicon wafer(100), glass, flat polished and mirror polished alumina, were used. The carbon films were deposited using methane atmosphere at four different self-bias voltages ( - 157 V, - 403 V, - 500 V, - 590V) by changing the plasma power under fixed flow rate and working pressure. The result showed that the deposition rate increased with self-bias for all the substrates. In addition, on silicon wafer and glass substrates the film thickness increased with self-bias. The surface morphology and roughness of the films were studied by AFM, and the overall surface morphology of flat and mirror polished alumina were studied by optical microscopy and the overall surface roughness were measured by α-step. The friction coefficient was measured by nanoindentation technique and the result showed that the influence of surface roughness on the friction coefficient becomes smaller as the film thickness increases. Raman analyses indicated that diamond-like carbon films were deposited on silicon and glass substrate at the self-bias – 403 V~ - 590 V, and polymer-like carbon films were obtained at – 157 V. For the alumina substrates, different Raman results were observed for flat and mirror polished alumina substrates. Results of infrared spectrum showed that the amount of C-H bonding decreases as the self-bias increases. The hardness of diamond-like carbon films, deposited on silicon and glass substrates at the self-bias -403 V~ - 590 V, is within 15~ 20 GPa using nanoindentation technique. Finally, the UV-Vis spectroscope was used to measure the optical transmittance of carbon films deposited on glass substrate.
CHINESE ABSTRACT……….........………………………….…………….I
ENGLISH ABSTRACT……….........………………………………….……II
TABLE OF CONTENTS….......…………………….…………..………..III
LIST OF FIGURES…….......……………………………..……..……….VIII
LIST OF TABLES…….......……………………...………..……………..XIV
CHAPTER
I Introduction……...………………....……………..……..………1
1.1 Foreword……...………………………………………..…...1
1.2 Motivations and Goals..………………..……………...….1
II Literature Review………………......……………..……..………2
2.1 Carbon Materials……...……………...……….………..…...2
2.2 Review of the Amorphous Carbon Films…………………
and Mechanism……………………………….…………….8
2.2.1 Review of the Amorphous Carbon Films………8
2.2.2 Mechanism…………………………………..………9
2.3 The Principle of Plasma………………………..…………13
2.3.1 Introduction…………………………………………13
2.3.2 Thermal Plasma and Cold Plasma…………..……14
2.3.3 The Distribution of Plasma…………………………15
2.3.4 Plasma Reactions…………………………………...17
2.3.5 Sheath………………………………………………18
2.3.6 The Advantages of Plasma………………………….20
2.4 The Effect of Substrates………………………..…………22
2.4.1 The Effect of Substrate on the………………………
Hardness of Film……………………………………22
2.4.2 The Effect of Substrate on the………………………
Structure of Film……………………………………24
2.4.3 The Effect of Substrate on the………………………
Friction Coefficient of Film……………...…………25
2.4.4 The Effect of Substrate on the………………………
Adhesion of Film………………………………26
2.5 Characterization Techniques………………..…….………27
2.5.1 Atomic Force Microscope (AFM)…………….……27
2.5.2 Raman Spectroscopy………………………..……28
2.5.3 Nanoindentation……………….……………………31
2.5.4 Residual Stress and Fathom Theory…...…………...34
2.5.4.1 Residual Stress Synopsis…………………34
2.5.4.2 Cause of Residual Stress…………………35
2.5.4.3 Membrane residual stress theory –………….
Stoney Model…………………………….37
2.5.5 Fourier Transform Infrared Spectrometer………..…40
2.5.5.1 Foreword...…………….…………………40
2.5.5.2 The Infrared Spectrum of PAC…………41
2.5.5.3 The Infrared Spectrum of DLC..…………43
2.5.5.4 The Infrared Spectrum of GAC..…………44
2.5.6 Friction Coefficient………………...……………….45
III Experimental Procedures and Apparatus………….……..……46
3.1 Experimental Procedures……...……………..………..…..46
3.2 Apparatus and Measurement…………….…………….….51
3.2.1 Raman Spectrometer………….………………...………51
3.2.2 Nano Indenter System………………….…..………51
3.2.3 Surface Profiler………………………………….….52
3.2.4 Atomic Force Microscope (AFM)……………….…52
3.2.5 The Measurement of Residual Stress
In The Film…………...……………………………..53
3.2.6 Fourier transform infrared spectrometer……….…53
3.2.7 UV-Vis Spectrophotometer…………………..……..54
3.2.8 The Measurement of Friction Coefficient………….54
IV Results And Discussion…………......……………..…….……56
4.1 The Preparation of Carbon Films...…………….….....…..56
4.1.1 Deposition Rates Under Different Self Biases……56
4.1.2 The Thickness of Films Under Different
Self Biases……………………………..……………56
4.2 The Measurement of Surface Topography and……………….
Roughness…………………………………………………59
4.2.1 Silicon Wafer……………………………….………59
4.2.2 Glass……………………………….…………..…60
4.2.3 Flat Polished Alumina………………………………60
4.2.3.1 Topography and Roughness As ……………
A Whole………………………………….60
4.2.3.2 Section Image ……………………………61
4.2.4 Mirror Polished Alumina…………………………62
4.2.4.1 Topography and Roughness As ……………
A Whole………………………………….62
4.2.4.2 Section Image ……………………………62
4.3 Measurement and Analysis of Raman Spectrum...….....…..72
4.3.1 Silicon Wafer…………………………….....………72
4.3.2 Glass………………………………………………..73
4.3.3 Flat Polished Alumina………………………………74
4.3.4 Mirror Polished Alumina…………………………..…….75
4.4 Nanoindentation Hardness Measurement...….....……….....80
4.4.1 Silicon Wafer…………………………….....………80
4.4.2 Glass………………………………………………..81
4.5 Friction Coefficients………………………....….....……….....85
4.5.1 The Friction Coefficient of Carbon Film Deposited
Under Bias – 403 V………………………………86
4.5.2 The Friction Coefficient of Carbon Film Deposited
Under Bias – 500 V………………………………87
4.5.3 The Friction Coefficient of Carbon Film Deposited
Under Bias – 590 V………………………………87
4.6 Residual Stress…………………………....….……..……….....92
4.7 Fourier Transform Infrared Spectrometer, FTIR...…….....94
4.7.1 Silicon Wafer…………………………….....………94
4.7.2 Glass………………………………………………..94
4.7.3 Flat Polished Alumina……………………………..95
4.7.4 Mirror Polished Alumina…………………..……….95
4.8 Light Transmittances of Carbon Films...…………….….....99
4.8.1 The Impact of Bias on Light Transmittance………99
4.8.2 The Impact of Deposition Duration………………99
on Light Transmittance………………….………….99
V Conclusions…………......……………………………..…….…102
References…............................…………………….……………………105
1.Kingery WD, Bowen HK, Uhlmann DR. Introduction to Ceramics. John Wiley & Sons: Canada. 1991: Chapter 2.
2.余樹貞, 晶體之結構與性質. 渤海堂文化公司: 台北台灣1993: 第十二章.
3.Angus JC, Hayman CC. Low- Pressure, Metastable Growth of Diamond and “Diamondlike”Phases. Science 1988 ; 241: 913-21.
4.Robertson J. Properties of diamond-like carbon. Surf Coat Technol 1992; 50: 185-203.
5.張瑞發, 化工資訊, 1993: 4: 68.
6.Martino CD, Demichelis F, Tagliaferro A. Determination of the sp3/sp2 ratio in a-C:H films by infrared spectrometry analysis. Diamond Relat Mater 1995; 4: 1210-15.
7.Nalwa HS. Handbook of thin film materials. 2002.
8.Holland L, Ojha SM. The absence of a residual strain-cluster size dependence in an epitaxial monolayer of Cd on Ge(111). Thin Solid Films1976; 37:L17-8.
9.Weissmantel S, Reise G, Frier HJ, Henny F, Bewilogua K, Ebersbach U, Schurber C. Preparation of Hard Coatings by Ion Beam Methods. Thin Solid Films 1979; 63: 315-25.
10.Meyerson B, Smith FW. Electrical and Optical Properties of Hydrogenated Amorphous Carbon Films. J. Non-Cryst. Solids 1980; 35&36: 435-40.
11.Mckenzie DR, McPhedran RC, Botten LC, Savvides N, Netterfield RP. Hydrogenated carbon films produced by sputtering in argon-hydrogen mixtures. Appl Opt 1982; 21(20): 3615-6.
12.Varhue W, Pastel P. Diamond-like carbon films prepared by rf substrate biasing in an ECR discharge. J Mater Res 1990; 5(11): 2441-4.
13.Ray S, Middya AR, Barua AK. Diamond-like Carbons Films Prepared by Photochemical Vapour Deposition. Jpn J Appl Phys 1993; 32: L1559-61.
14.Tarvin JA, Fechner WB, Larsen JT, Rockett PD, Slater DC. Mass-Ablation Rates in a Spherical Laser-Produced Plasma. Phys Rev Lett 1983; 51: 1355-8.
15.Robertson J. Diamond-like amorphous carbon. Materials Science and Engineering R 2002; 37:129-281.
16.Alfred Grill, Bernard S Meyerson. Synthetic Diamond: Emerging CVD Science and Technology. 1994: 91.
17.Tomasella E, Thomas L, Dubois M, Meunier C. Structural and mechanical properties of a-C:H thin films grown by RF-PECVD. Diamond & Related Materials 2004; 13: 1618-24.
18.曾煥華,電漿的世界, 銀禾文化事業有限公司: 台北台灣. 1987: 第一章.
19.Brian Chapman. Glow Discharge Processes. John Wiley & Sons Inc.: United State of America 1980: Chapter5.
20.洪昭南, 電漿反應器, 化工技術 1995: 第三卷,第三期: 124.
21.Roth JR. Industrial Plasma Engineering-Volume 1:Principles, Institute of Physics Publishing. London 1995.
22.莊達人, VLSI製作技術, 高立圖書 1980: 545-66.
23.阿部東彥、家田正之 等著, 電漿化學, 復漢出版社1984.
24.Williams PF. Introduction to plasma etching, Plasma Processing of semiconductors. Kluwer Academic Publishers: Boston 1997:1-21.
25.Williams PF. Plasma chemistry, basic process, and PECVD, Plasma Processing of semiconductors. Kluwer Academic Publishers: Boston 1997: 22-59.
26.陳良益. 奈米晶體複合薄膜在磨潤與光電性質之研究. 成功大學化工所碩士論文,1998.
27.Fabes BD, Oliver WC, McKee RA, Walker FJ. The determination of film hardness from the composite response of film and substrate to nanometer scale indentations. J Mater Res 1992; 7: 3056-64.
28.Ranjana S, William DN. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia 2002; 50: 23-38.
29.Burnett PJ, Rickerby DS. The Mechanical Properties of wear-resistant coatings I: Modelling of Hardness Behaviour. Thin Solid Films 1987; 148: 41-50.
30.Burnett PJ, Rickerby DS. The Mechanical Properties of wear-resistant coatings II: Experimental studies and Interpretation of Hardness. Thin Solid Films 1987; 148: 51-65.
31.Poliakov VP, Siqueira CJ de M, Veiga W, Hummelgen IA, Lepienski CM, Kirpilenko GG, Dechandt ST. Physical and tribological properties of hard amorphous DLC films deposited on different substrates. Diamond and Related Materials 2004; 13:1511-5.
32.Donnelly K, Dowling DP, McConnell ML, Mooney M. The adhesion of hydrogenated amorphous carbon films on silicone. Thin Solid Films 2001; 394:102-8.
33.Bandorf B, Luthje H, Wortmann A, Staedler T, Wittorf R. Influence of substrate material and topography on the tribological behaviour of submicron coatings. Surface and Coatings Technology 2003; 174-175: 461-4.
34.Clay KJ, Speakman SP, Morrison NA, Tomozeiu N, Milne WI, Kapoor A, Material properties and tribological performance of rf-PECVD deposited DLC coatings. Diamond and Related Materials 1998; 7:1100-7.
35.Hansma PK, Tersoff J. Scanning tunneling microscopy. J Appl Phys 1987; 61: R1-23.
36.Sun Z. Morphological features of diamond-like carbon films deposited by plasma-enhanced CVD. Journal of Non-Crystalline Solids 2000; 261: 211-7.
37.Capano MA, McDeutt NT, Singh RK, Qian F. Characterization of amorphous carbon thin films. J Vac Sci Technol A 1996; 14(2): 431-5.
38.Tamor M A, Vassel WC. Raman“fingerprinting”of amorphous carbon films. J Appl Phys 1994; 76(6): 3823-30.
39.Tasi HC, Bogy DB. Characterization of diamondlike carbon films and their application as overcoats on thin-film media for magnetic recording. J Vac Sci Technol A 1987; 5(6):3287-312.
40.何主亮,常挽瀾,陳育智. 真空科技,1996: 第9卷,第二期: 34.
41.Beeman D, Silverman J, Lynds R, Anderson MR. Modeling studies of amorphous carbon. Phys Rev B 1984; 30: 870-5.
42.Fung MK, Chan WC, Gao ZQ, Lee CS, Lee ST. Effect of nitrogen incorporation into diamond-like carbon films by ECR-CVD. Diamond and Related Materials 1999; 8: 472-6.
43.Peerson MJ. Energy dependent structure changes in ion beam deposited a-C:H. Diamond and Related Materials 1996; 5: 1407-13.
44.Shiao J, Hoffman RW. Studies of diamond-like and nitrogen-containing diamond-like carbon using laser Raman spectroscopy. Thin Solid Films 1996; 283: 145-50.
45.Bhushan B. Handbook of micro/nanotribology, 2nded., Boca Raton: 1999.
46.Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992; 7(6): 1564-83.
47.Charitidis C, Logothetidis S, Douka P. Nanoindentation and nanoscratching studies of amorphous carbon films. Diamond and Related Materials 1999; 8:558-62.
48.Martinez E, Andujar JL, Polo MC, Esteve J, Robertson J, Milne WI. Study of the mechanical properties of tetrahedral amorphous carbon films by nanoindentation and nanowear measurement. Diamond and Related Materials 2001; 10: 145-52.
49.Grill A, Patel V and Meyerson BS. Optical and tribological properties of heat-treated diamond-like carbon. J Mater Res 1990; 5: 2531-7.
50.Rubin M, Hopper CB, Cho NH, Bhushan B. Optical and mechanical properties of dc sputtered carbon films. J Mater Res1990; 5: 2538-42.
51.Davis CA. A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 1993; 226:30-4.
52.Nir D. Summary Abstract: Energy dependence of the stress in stress in diamondlike carbon films. J Vac Sci Technol A 1986; 4: 2954-5.
53.d’Heurle FM, Harper JME. Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering. Thin Solid Films 1989; 171: 81-92.
54.Milton Ohring, The Material Science of Thin Film, Academic Press, Inc, 1992.
55.Buckel W. Internal Stress. J Vac Sci Tech 1969; 6: 606-10.
56.黃承揚, 薄膜應力及其微觀結構分析, 國立中央大學光電所碩士論文, 1999.
57.Grill A, Meyerson B. Synthetic Diamond: Emerging CVD Science and Technology. K.E. Spear and J.P. Dismukes, Eds., John Wiley & Sons, Inc.: New York. 1994: 91.
58.Couderc P, Catherine Y. Structure and physical properties of plasma-grown amorphous hydrogenated carbon films. Thin Solid Films 1987; 146: 93-107.
59.Dischler B, Bubenzer A, Koidl P. Hard carbon coatings with low optical absorption. Appl Phys Lett 1983; 42: 636 –8.
60.Tanaka M, Iwata T, Fujimoto F, Komachi K, Kobayashi K, Yamashita H, Haba M. Determination of the infrared proportionality coefficient of the CHn stretching mode for a-C:H and a-SiC:H films using ERD methods. Nucl Instrum Methods Phys Res B 1990; 45: 223 –6.
61.Grill A, Patel V. Characterization of diamondlike carbon by infrared spectroscopy. Appl Phys Lett 1992; 60: 2089-91.
62.Grill A, Patel V. Wear resistant fluorinated diamondlike carbon films. Diamond Films & Technol 1996; 6: 13 –20.
63.Anguita JV, Silva SRP, Burden AP, Sealy BJ, Haq S, Hebbron M, Sturland I, Pritchard A. Thermal stability of plasma deposited thin films of hydrogenated carbon-nitrogen alloys. J Appl Phys 1999; 86: 6276-81.
64.Silva SRP, Amaratunga GAJ, Constantinou CP. Optical properties of amorphous C/diamond thin films. J Appl Phys 1992; 72: 1149-53.
65.Schwan J, Dworschak W, Jung K, Ehrhardt H. Microstructures and mechanical properties of amorphous hydrogenated carbon-nitrogen films. Diamond Relat Mater 1994; 3: 1034-9.
66.Schwan J, Batori V, Ulrich S, Ehrhardt H, Silva SRP, Nitrogen doping of amorphous carbon thin films. J Appl Phys 1998; 84: 2071-81.
67.Colthup LHDNB, Wiberley SE. Introduction to Infrared and Raman Spectroscopy. Academic Press: New York 1975.
68.Ristein J, Stief RT, Ley L. A comparative analysis of a-C:H by infrared spectroscopy and mass selected thermal effusion. J Appl Phys 1998; 84: 3836-47.
69.Martinu L, Raveh A, Domingue A, Bertrand L, Klemberg JE, Gujrathi SC, Wertheimer MR. Hard carbon films deposited under high ion flux. Thin Solid Films 1992; 208: 42-7.
70.Meyer E, Overney RM, Dransfeld K, Gyalog T. Nanoscience: Friction and Rheology on the Nanometer Scale. World Scientific: Singapore 1998.
71.Amontons G. Mémoires de l′académie royale A 1706: 257.
72.Coulomb CA. Théorie des machines simples, en ayant égard au frottement de leurs parties, et à la roideur des cordages. Mém. Math. Phys: Paris. 1785: 161.
73.Bowden FP, Tabor D. The Friction and Lubrication of Solids, Press: Oxford University 1950.
74.William D. Materials Science and Engineering an Introduction. John Wiley & Sons:1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔