(3.215.180.226) 您好!臺灣時間:2021/03/09 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張乃文
研究生(外文):Nai-wen Chang
論文名稱:在具有分佈式感應器的網路空間中應用模糊分散式滑動控制於自走車之研究
論文名稱(外文):Fuzzy Decentralized Sliding-Mode Control of Car-Like Mobile Robots in Distributed Sensor-Network Space
指導教授:黃志良黃志良引用關係
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:49
中文關鍵詞:模糊滑動控制感測器控制分散式控制離散式控制自走車
外文關鍵詞:Decentralized controlDistributed controlMobile robotSensor based controlSliding-mode control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文是應用具有分佈式感應器的網路空間之模糊分散式滑動控制於自走車軌跡追蹤及靜(動)態障礙之閃躲。首先使用兩個分散的CCD擷取自走車及障礙物的相關動態位置,以進行軌跡追蹤及靜(動)態障礙之閃躲。在此基礎下,利用無線模組對自走車傳送合適的前輪轉角及後輪速度。搭配模糊理論即可追蹤一參考軌跡,不需使用其他數學模組。此控制系統包括兩個不同取樣頻率之處理器:一為應用個人電腦擷取自走車及障礙物的影像,以規劃一參考軌跡,並傳送至自走車;另一個為裝置於自走車上的數位訊號處理器,用以控制兩直流馬達。最後,用一系列的實驗來證明此控制系統的可行性
In this thesis, the trajectory tracking and (dynamic) obstacle avoidance of a mobile robot within distributed sensor-network space via fuzzy decentralized sliding-mode control (FDSMC) was developed. To implement trajectory tracking and (dynamic) obstacle avoidance, two distributed CCD (charge-coupled device) cameras were set up to realize the dynamic position of the mobile robot and the obstacle. Based on the control authority of these two CCD cameras, a suitable reference trajectory including desired steering angle and linear velocity for the proposed controller of the mobile robot was planned. It was also transmitted to the mobile robot by a wireless module. The proposed fuzzy decentralized sliding-mode control could track a reference trajectory without the requirement of a mathematical model. Only the information of the upper bound of system knowledge was required to select the suitable scaling factors and coefficients of sliding surface so that an acceptable performance was achieved. The proposed control system included two processors with multiple sampling rates. One personal computer was employed to capture the image of CLMR and obstacle, to plan a reference trajectory for the CLMR, and then to transmit the reference trajectory to the CLMR. The other was a DSP implementing in the CLMR to control two DC motors. Finally, a sequence of experiments was carried out to confirm the performance of the proposed control system.
ABSTRACT………………………………………………………………………………i
摘要……………………………………………………………………………………….iii
ACKNOWLEDGMENT………………………………………………………………...iv
CONTENTS…………………….………………………………………………………...v
LIST OF FIGURES…………………………………………..…………………………vi
LIST OF TABLES…………………………………..………………………………....viii
Chapter 1 INTRODUCTION……………………………………………………………1
Chapter 2 SYSTEM DESCRIPTIONAND PROBLEM FORMULATION …………4
2.1 System Description………………………………………………………………4
2.2 Problem Formulation……………………………………………………………..7
Chapter 3 FUZZY DECENTRALIZED SLIDING-MODE CONTROL ……………9
Chapter 4 EXPERIMENTAL RESULTS …………………………………………….13
4.1 Pose Estimation…………………………………………………………………13
4.2 Experimental Results …………………………………………………………...13
Chapter 5 CONCLUSIONS……………………………………………………………17
REFERENCES………………………………………………………………….………18


LIST OF FIGURES
Fig. 1. The block diagram of the overall system ………………………………………...21
Fig. 2. Kinematic model of a CLMR……………………………………………………..21
Fig. 3. Realization of the CLMR…………………………………………………………22
Fig. 4. The block diagram of the Matrox Meteor II Multi-Channel. …………………….23
Fig. 5. The estimation of the position and orientation of CLMR using three LEDs. ……23
Fig. 6. Definition of various coordinates. ………………………………………………..24
Fig. 7. The intelligent space via two CCDs………………………………………………24
Fig. 8. Block diagram of fuzzy decentralized sliding-mode control. ……………………25
Fig. 9. Membership function with triangular type. ………………………………………25
Fig. 10. The responses of CLMR without the subjection of external load by using FDSMC. ……………………………………………………………………………..26~27
Fig. 11. The strategy for the avoidance of static obstacle………………………………..28
Fig. 12. The illustration of starting to avoid obstacle in Fig. 11…………………………28
Fig. 13. The illustration of the relation between minimum distance and distance in Fig.11……………………………………………………………………………………..29
Fig. 14. The strategy for the avoidance of dynamic obstacle. …………………………...29
Fig. 15. The responses of trajectory tracking for different initial poses of the CLMR without the subjection of any obstacle in distributed sensor-network space. ……………30
Fig. 16. The responses of trajectory tracking for different initial poses of the CLMR with two kind of static obstacles in distributed sensor-network space…………………….31~32
Fig. 17. The responses of trajectory tracking for different initial pose of the CLMR with one static obstacle and one dynamic obstacle in distributed sensor-network space……...33
Fig. 18. The responses of steering angle and linear velocity for the Fig. 15 (a)………….34
Fig. 19. The responses of steering angle and linear velocity for the Fig. 16 (b). ………...35


LIST OF TABLES
Table 1. Basic specifications of CLMR. …………………………………………………36
Table 2. Rule table of the ith FSMC………………………………………………………36
Table 3. Look-up table of the ith FSMC. ………………………………………………...36
Table 4. Shows the position (x,y) cm of CLMR with respect to the world coordinate and the estimation by the CCD1………………………………………………………………37
Table 5. Shows the position (x,y) cm of CLMR with respect to the world coordinate and the estimation by the CCD2………………………………………………………………38
[1] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert and S. S. Sastry, “Distributed control applications within sensor networks,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1235-1246, 2003.
[2] T. Yamaguchi, E. Sato and Y. Takama, “Intelligent space and human centered robotics,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 881-889, 2003.
[3] J. H. Lee and H. Hashimoto, “Controlling mobile robots in distributed intelligent sensor network,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 890-902, 2003.
[4] F. Amigoni, N. Gatti, C. Pinciroli and M. Roveri, “What planner for ambient intelligence applications?,” IEEE Trans. Syst. Man & Cyber., Part A, vol. 35, no. 1, pp. 7-21, 2005.
[5] T. S. Barger, D. E. Brown and M. Alwan, “Health-status monitoring through analysis of behavioral patterns,” IEEE Trans. Syst. Man & Cyber., Part A, vol. 35, no. 1, pp. 22-27, 2005.
[6] F. Doctor, H. Hagras and V. Callaghan, “A fuzzy embedded agent-based approach for realizing ambient intelligence in intelligent inhabited environments,” IEEE Trans. Syst. Man & Cyber., Part A, vol. 35, no. 1, pp. 55-65, 2005.
[7] K. Briechle and U. D. Hanebeck, “Location of a mobile robot using relative bearing measurements,” IEEE Trans. Robot. & Automat., vol. 20, no. 1, pp. 36-44, 2004.
[8] R. C. Luo and T. M. Chen, “Autonomous mobile target tracking system based on grey fuzzy control algorithm,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 920-931, 2000.
[9] S. X. Yang and Q. H. Meng, “Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach,” IEEE Trans. Neural Networks, vol. 14, no. 6, pp. 1541-1552, 2003.
[10] J. Minguez and L. Montano, “Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios,” IEEE Trans. Robot. & Automat., vol. 20, no. 1, pp. 45-59, 2004.
[11] D. D. Sijak, Large-Scale Dynamic Systems: Stability and Structure. North-Holland, 1978.
[12] C. S. Tseng and B. S. Chen, “ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 6, pp. 795-809, 2001.
[13] Y. S. Kung and C. M. Liaw, “ A fuzzy controller improving a linear model following controller for motor drives,” IEEE Trans. Fuzzy Syst., vol. 2, no. 3, pp. 194-202, 1994.
[14] C. L. Hwang and C. W. Hsu, “A thin and deep hole drilling using a fuzzy discrete sliding mode control with a woodpeckering strategy,” IME Proc. J. Syst., Contr. Eng. vol. 209, pp. 281-291, 1995.
[15] C. L. Hwang and C. Jan, “Optimal and reinforced robustness designs of fuzzy variable structure tracking control for a piezoelectric actuator system,” IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 507-517, 2003.
[16] I. Baturone, F. J. Moreno-Velo, S. Sanchez-Solano and A. Ollero, “Automatic Design of fuzzy controllers for car-like autonomous robots,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 447-465, 2004.
[17] T. H. S. Li, S. J. Chang, “Fuzzy target tracking control of autonomous mobile robots by using infrared sensors,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 491-501, 2004.
[18] Y. Hung, W. Gao and J. C. Hung, “Variable structure control: A survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp.2-22, 1993.
[19] K. D. Young, V. I. Utkin and “A control Engineer’s guide to sliding mode control,” IEEE Trans. Contr. Syst. Technol., vol. 7, no. 3, pp. 328-342, 1999.
[20] C. L. Hwang, “Neural-network-based variable structure control of electrohydraulic servosystems subject to huge uncertainties without the persistent excitation,” IEEE/ASME Trans. Mechatron., vol.4, no.1, pp. 50-59, 1999.
[21] K. Furuta and Y. Pan, “Variable structure control with sliding sector,” Automatica, vol. 36, no. 3, pp. 211-228, 2000.
[22] C. L. Hwang, Y. S. Yu, and S. Y. Han, “A network-based fuzzy decentralized sliding-mode control for car-like mobile robots,” IEEE FUZ05, Reno, Nevada, USA, pp. 61-66, May 22nd-25th,2005.
[23] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot using neural networks,” IEEE Trans. Neural Networks, vol. 9, no. 4, pp. 589-600, 1998.
[24] S. X. Yang, H. Li, M. Q.-H. Meng and P. X. Liu, “An embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 436-446, 2004.
[25] K. J. Astrom and B. Wittenmark, Computer-Controlled Systems --- Theory and Design, Prentice-Hall Inc., 3rd Ed., 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔