(3.238.249.17) 您好!臺灣時間:2021/04/14 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張耿榮
研究生(外文):Keng-rong Chang
論文名稱:甲醇蒸汽重組之薄膜反應器:單套管反應器之數據回歸與模擬
論文名稱(外文):MEMBRANE REACTOR FOR METHANOL STEAM REFORMING: DATA REGRESSION AND SIMULATION OF A SINGLE-JACKET REACTOR
指導教授:洪賑城
指導教授(外文):Jan-chen Hong
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:58
中文關鍵詞:甲醇蒸汽重組薄膜反應器
外文關鍵詞:membrane reactormethanol steam reforming
相關次數:
  • 被引用被引用:1
  • 點閱點閱:205
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究室長遠的研究目標為,設計一個小型而無額外熱交換器之甲醇蒸汽重組之薄膜反應器以生產純氫氣。本研究之目標為此長遠計劃的初步的步驟,發展單管甲醇蒸汽重組反應器之數學模式,包括本實驗室使用之觸媒動力學數據,以及Pd膜管之滲透參數。
我們使用兩種速率方程式回歸以Pt為促進劑之CuO/ZnO/Cr2O3/ CeO2/Al2O3 觸媒之動力學數據。模式1使用6個參數,平均誤差為0.06349、模式2使用8個參數,平均誤差為0.05036。
一個單管反應器之數學模式已經被發展。Sievert’s定律用來解釋氫氣的滲透,而採用Soave-Redlish-Kwang狀態方程式去估計甲醇與水在高壓下之非理想狀態之逸壓係數。一個福傳語言程式已經被發展用來模擬單管薄膜反應器內所有參數之實驗數值。模擬的結果有助於我們了解各變數設計在氫氣的產生率或氫氣通量之效應,例如甲醇進料量與滲透面積的比值、甲醇進料與觸媒之空間流速比、觸媒重量和滲透參數。
It is a long-term research objective for this laboratory to design a membrane reactor for methanol steam reforming that produces pure hydrogen in a compact size without external heat source. The objective of this study, which is a beginning step of the long-term project, is to develop a mathematical model for a single-jacked membrane reactor for methanol steam reforming with kinetic data of catalyst and permeability of Pd membrane obtained experimentally in this laboratory.
The kinetic data over Pt-promoted CuO/ZnO/Cr2O3/CeO2/Al2O3 catalyst obtained in this laboratory were regressed to two models of rate equations. The average errors for model predictions of conversions are 0.06349 for Model 1 which has six parameters and 0.05036 for Model 2 which has eight parameters.
A mathematical model for a single-jacked membrane reactor has been developed. Sievert’s law is used for hydrogen permeation and modified Soave-Redlish-Kwang equation of state is adopted to calculate the fugacity coefficients for methanol and water to account for the non-ideality at high pressure. A Fortran program has been established for the simulation of the single-jacked membrane reactor with all the parameters measured in the experiment. The simulation results can help us to understand the effects of design variables, such as load to surface ratio, WHSV, catalyst weight and permeability, on the hydrogen production yield or hydrogen flux.
ACKNOWLEDGEMENTS………………………………………………...iii
ABSTRACT………………………………………………………………....v
CHINESE ABSTRACT…………………………………………...………..vi
TABLE OF CONTENTS…………………………………………...……...vii
LIST OF TABLE……………………………………………………………ix
LIST OF FIGURE…………………………………………………………...x
NOTATION………………………………………………………………...xii
CHAPTER 1 INTRODUCTION……………………………………………1
1.1 Previous Study………………………………………………..1
1.2 Objective of This Study………………………………………5
CHAPTER 2 MATHEMATIC MODEL……………………………………6
2.1 Reactions in Methanol Stream Reforming…………...……...6
2.2 Mass Balance in Membrane Reactor…...……………………6
2.3 Rate Equation and Equilibrium Constant...……………........13
CHAPTER 3 DATA REGRESSION AND COMPUTER SIMULATION...18
3.1 Equilibrium Constant Calculation…………………………..18
3.2 Fugacity Coefficient………………………………………...18
3.3 Computer Simulation……………………………………….20
3.4 Kinetics Data Regression…………………………………...23
CHEAPTER 4 RESULTS AND DISOUSSION…………………………...26
4.1 Kinetic Data Regression…………………………………….26
4.2 Computer Simulation……………………………………….39
CHAPER 5 CONCLUSION……………………………………………….50
REFERENCES……………………………………………………………..52
APPEDDIX………………………………………………………………...55
1.R.E. Buxbaum, “Membrane Reactors, Fundamental and Commercial Advantages, e.g. for Methanol Reforming,” The 15th BCC Membrane Planning Conference, Newton, Mass., (1997).
2.R. E. Buxbaum, “Membrane Reactor Advantages for Methanol Reforming and Similar Reactions,” Separation Science Technology, 34 (1999) 2113–2123.
3.R. E. Buxbaum, “High Temperature Gas Purification System,” US Patent No. 5,888,273, (1999).
4.R. E. Buxbaum and A. B. Kinney, “Hydrogen Transport through Tubular Membranes of Palladium-Coated Tantalum and Niobium,” I&EC Research, 35 (1996) 530-537.
5.T. T. Tsotsis, A.M. Champagnie, S. P. Vasileiadis, Z.D. Ziaka and R. G. Minet, “The Enhancement of Reaction Yield through the Use of High Temperature Membrane Reactors,” Sep. Sci. and Tech., 28 (1993) 397-422.
6.S. Roy, M.T. Islam, B. B. Pruden and R. E. Buxbaum, “Palladium Coated, High Flux Tubular Membranes for Hydrogen Separation at High Temperatures and Differential Pressures,” 1997 SAE Fuels and Lubricants Meeting, Edmonton.
7.A. F. Ghenciu, “Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems,” Current Opinion in Solid State & Materials Science, 6 (2002) 389-399.
8.P. P. Mardilovich, Y. She, Y. H. Ma and M. H. Rei, “Defect-Free Palladium Membranes on Porous Stainless-Steel Support,” AIChE J., 44 (1998) 310-322.
9.Y. M. Lin, G. L. Lee and M. H. Rei, “An Integrated Purification and Production of Hydrogen with a Palladium Membrane Catalytic Reactor,” Catalysis Today, 44 (1998) 343-349.
10.Y. M. Lin and M. H. Rei, “Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer,” Hydrogen Energy, 25 (2000) 211-219.
11.S. P. Asprey, B. W. Wojciechowski, B. A. Peppley, “Kinetic studies use the steam-reforming of methanol,” Applied Catalysis, 179 (1999) 51-70.
12.M. P. Harold, B. Nair and G. Kolios, “Hydrogen generation in a Pd membrane fuel processor: assessment of methanol-based reaction systems,” Chemical Engineering Science, 58 (2003) 2551-2571.
13.S. I. Sandler “Chemical and Engineering Thermodynamics,” 3rd ed., John Wiley & Sons, Inc., New York, (1999)
14.R. C. Reid, J. M. Prausnitz and B. E. Poling, “The Properties of Gases and Liquids,” 4th ed., Mcgraw-Hill Book Company, New York, (1989).
15.S. L. Leon and A. D. Waren, “GRG2 User Guide,” University of Texas at Austin, Texas. (1989)
16.“IMSL Computational Technology Toolkkit,” Visual Numerics, Inc. (1997).
17.J. M. Chen, Private Communication.
18.C. Y. Lin, “Membrane Reactor for Methanol Steam Reforming: Experiment in a Single Jacket Reactor,” Master Thesis, Tatung University, Taipei, Taiwan (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔