(3.215.183.251) 您好!臺灣時間:2021/04/23 14:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊達淯
研究生(外文):Ta-Yu Chuang
論文名稱:放電加工製程條件對奈米銀微粒合成之影響研究
論文名稱(外文):The influence of EDM process parameters for silver nanoparticle
指導教授:林鴻明林鴻明引用關係
指導教授(外文):Hong-ming Lin
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:46
中文關鍵詞:奈米銀微粒真空電弧製程絕緣液溫度
外文關鍵詞:Arc Spray Nanoparticle Synthesis Systemdielectric liquid temperaturesnanosilver particles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中使用真空電弧製程(Arc Spray Nanoparticle Synthesis System, ASNSS)製備奈米銀微粒。金屬電極在放電加工過程中迅速的熔融蒸發,並於較低溫的絕緣液中凝結、懸浮,形成奈米流體。ASNSS製程的機制是將欲加工的金屬電極利用電弧方式,使材料於過熱狀態下,形成奈米微粒,並經由絕緣液快速冷卻生成奈米流體。
本實驗在探討各項製程的控制參數,如:電流、電壓、脈衝時間、電極直徑、與絕緣液溫度等,以最佳化的操作參數在奈米流體內生成微細顆粒。實驗結果顯示,在酒精中的電極可製成球狀奈米銀顆粒。在不同絕緣液溫度-40℃、 -20℃、 0℃和10℃中,銀微粒的大小分別為13.4nm, 15.8nm, 17.5nm, 和21.6nm。此結果顯示藉由控制較低的絕緣液溫度,可以得到分散性良好的流體。
FTIR的結果顯示,在放電加工過程中,酒精並未被分解且不會污染奈米銀微粒。真空電弧製程(ASNSS)可在酒精中得到分散良好的純奈米銀流體,此奈米銀流體的產能將可接近商業化的應用。
Arc Spray Nanoparticle Synthesis System (ASNSS) have been used to prepare the silver nanofluids in this study. The metal electrodes under the electrical discharge will melt and evaporate rapidly and condense to form the nanoparticles in the dielectric fluid at lower temperature and produce the suspended nanoparticle fluid. Thus, the mechanism of the ASNSS process is superheating the electrodes by plasma to form metallic nuclei and supercooling these nuclei by dielectric liquid to produce nanofluid.
This study considers the different controlling parameters such as discharge current, discharge voltage, pulse-duration time, electrode diameter, and the temperature of dielectric liquid. The optimal operated parameters can be obtained to produce the finer particle size in nanofluid. The results indicate the silver electrodes in alcohol fluid will produce the sphere nanosilver particles. The mean particle size of silver in different dielectric liquid temperatures of -40℃; -20℃; 0℃; and 10℃ is about 13.4nm, 15.8nm, 17.5nm, and 21.6nm, respectively. This indicates that the well suspended fluid can be obtain by controlling the lower dielectric fluid temperature.
FTIR results indicate there are no decomposition of alcohol during arc discharge that may contaminate the silver nanofluids. ASNSS process can obtain well suspended pure nanosilver particles in alcohol forming nanofluid. The yield of nanofluid is approximated the commercial applications.
ENGLISH ABSTRAC I
CHINESE ABSTRACT II
TABLE OF CONTENTS Ⅲ
LIST OF TABLES Ⅴ
LIST OF FIGURES Ⅵ
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 3
2.1 Preparing mechanisms of ASNSS Process 3
2.2 Nucleation and growth of the Nanoparticles 8
2.3 Effect of the parameters on the preparation of Nanoparticles 12
2.4 Analysis of sedimentation of nanoparticles 16
CHAPTER 3 EXPERIMENT 19
3.1 Design and fabrication of the preparing system of the nanoparticles(ASNSS) 29
3.2 Experimental procedure 23
3.3 Experimental factors 26
3.4 Specimen analysis 26
3.4-1 The particle size and structural properties of silver
Nanoparticles 26
3.4-2 Characteristic of Nanoparticles 27
CHAPTER 4 RESULTS AND DISCUSSIONS 29
4.1 Experimental Design 29
4.2 Image Analysis of Nanoparticles 30
4.3 Analysis of the relationship between aspect ratio and process condition 38
4.4 UV/Visible and FTIR Analysis 40
CHAPTER 5 Conclusion 43
CHAPTER 6 The Future work 44
REFERENCES 45
[1] R. Birringen, Mater. Sci. Eng. A117, (1989) 33.
[2] H. Gleiter , Prog. Mater. Sci. 33 , (1989) 223.
[3] H. Froes and C. Suryanarayana , JOM , June 1989 , p.12.
[4] R. P. Andres, R. S. Arerback , et al. , J. Mater. Res. ,4(3), May/June, (1989) 704-736.
[5] Eds. M. S. Mulrani , phase Trans. , (1990) 223
[6] The White House Office of the press secretary , “ National Nanotechnology Initiative Leading to the Next Industry Revolution “, January 21, 2000.
[7] The White House Office of the press secretary, “Present Clinton the White House Office of the press secretary announces nearly a $3 billion increase in twenty-first century research fund”, January 21, 2000.
[8] Tsing-Tshin Tsung; Ho Chang; Liang-Chia Chen; Hong-Ming Lin; Chung-Kwei Lin, “ A Novel Nanoparticle Manufacturing Process Using Vacuum Submerged Arc Machining ”, Nano 2002 International Conference, June 2002.
[9] 黃錦鐘編譯 , 放電加工 , 1998
[10] Daryl D. DiBitonto; Philip T. Eubank; MuKund R. Patel; and Maria A. Barrufet, “theoretical models of the electrical discharge machining process. I. A simple cathode erosion model”, J. Appl. Phys. 66(9), 1 November 1989.
[11] Lawrence, Rhoades, “Understanding EDMed Surfaces”, Cutting tool engineering, April, 1996.
[12] T. C. Lee and W. S. Lau, “ Some Characteristics of Electrical Discharge Machining of Conduction Ceramics ”, Materials and Manufacturing Processes, Vol. 6, No. 4, 1991, pp.635-648.
[13] Ajit Singh; Amitabha Ghosh, “ A thermo-electric model of material removal during electric discharge machining ”, International Journal of Machine Tool & Manufacture, 39, 1999.
[14] 原木幹雄 , 電氣加工學會誌 , Vol.11 , No.21 ,No.22.
[15] F. Van. Dijck and R. Snoyes , 電氣加工學會誌 , Vol.11 , No.21 , No.22.
[16] J.H. Zhang, T. C. Lee and W. S. Lau, “ Study on the electric-discharge machining of a hot pressed aluminum oxide based ceramic ”, Journal of Material Processing Technology, Vol.63, 1997, p.908-912.
[17] 張渭川編譯 , 放電加工的結構與實用技術 , 1995.
[18] Philip T. Eubank, Mukund R. Patel, Maria A. Barrufet, and Bedri Bozurt, “Theoretical models of the electrical discharge process. Ⅲ. The variable mass, cylindrical plasma model”, J. Appl. Phys. , 73(11), June 1, 1993.
[19] M. R. Patel, M. A. Barrufet, and P. T. Eubank, in proceeding of the 11th International Steam Conference, edited by M. Pichal and O. Sifner (Hemisphere, New York, 1990), p. 91.
[20] 戴遐明、王家龍 , 等離子技術在高性能粉體製造之應用 , 中國粉體技術 , 第5卷第6期 , 1999 , p.28-32
[21] 張組繼、李厲興 , 材料科學導論 , 上海科學技術出版社 , 1989
[22] 蘇品書 , 超微粒子材料技術 , 復漢出版社 , 1999
[23] 加藤昭夫 , 超微粒子的製造法 . (1)化學的方法 , 化學總說 [J].
[24] Robert E. Reed-Hill, Reza Abbaschian, “Physical Metallurgy Principles”, 3rd edition.
[25] 小林和彥 , 三菱電機技報 , vol.45 , No.10 , p.33.
[26] 陳竹男 , 放電加工 , 建宏出版社 , 1980.
[27] Toren, M.; Zvirin, Y.; Winograd, Y., “ Melting and Evaporation Phenomena During Electrical Erosion ”, Journal of Heat Transfer, Transaction ASME, v97, n4, Nov, 1975.
[28] Mukund R. Patel; Maria A. Barrufet; Philip T. Eubank; Daryl D. DiBitonto, “ Theoretical models of the electrical discharge machining process. II. The anode erosion model ”, J. Appl. Phys. 66(9), 1 November 1989.
[29] http://epist.math.ntu.edu.tw/articles/mm/mm
[30] 張立德、車季美 , 納米材料與納米結構 ,科學出版社 .
[31] Wu, Yuin, and Dr. Willie Hobbs Moore, Quality Engineering : Product & Process Design Optimization, p. 123.
[32] Eastman, J. A.; Choi, U. S.; Li, S.; Soyez, G.; Thomposn, L. J.; DiMelfi, R. J, “Novel thermal properties of nanostructured materials”, Material Science Forum, v312, 1999
[33] Wang, Xinwei; Xu, Xianfan; Choi, Stephen U. S., “thermal conductivity of nanoparticle-fluid mixture”, Journal of Thermophysics and Heat Transfer, v13, n4, 1999, p474-480
[34] 劉明坤 , “真空潛弧製程製備二氧化鈦奈米微粒懸浮之製程開發及其最佳化” , 北科大, 2002
[35] http://www.titanex.com.tw/ed/lb500.html
[36] Philip T. Eubank, Mukund R. Patel, Maria A. Barrufet, and Bedri Bozurt, “Theoretical models of the electrical discharge process. Ⅲ. The variable mass, cylindrical plasma model”, J. Appl. Phys. , 73(11), June 1, 1993.
[37] T. C. Lee and W. S. Lau, “ Some Characteristics of Electrical Discharge Machining of Conduction Ceramics ”, Materials and Manufacturing Processes, Vol. 6, No. 4, 1991, pp.635-648
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔