跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊慶鴻
研究生(外文):Ching-Hong Yang
論文名稱:奈米碳管與二氧化鈦混成系統之合成研究
論文名稱(外文):The Synthesis of Nano Hybrid CNTs/TiO2 Materials
指導教授:林鴻明林鴻明引用關係
指導教授(外文):Hong-Ming Lin
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:78
中文關鍵詞:溶膠凝膠法.二氧化鈦.奈米碳管
外文關鍵詞:CNTssol-gelTiO2
相關次數:
  • 被引用被引用:2
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
近年來奈米碳管由於具有獨特的性質例如:高的長直比、超強的強度、奈米級的結構、儲氫能力和半導體的性質。更由於未來未知領域的開發,使奈米碳管已經變成一種越來越受歡迎的材料並廣泛的成為研究對象。本研究係探討二氧化鈦包覆碳奈米管之特性,使其成為一個新的材料,這個新材料具有碳奈米管與二氧化鈦的雙重特性優點,可以探討其特殊機械性質、氣體感測、電性等特性,論文中有初步對混成材料的電性研究數據,同時希望利用碳管比表面積大、可供給眾多氣體吸附位置、具良好導電性等特性,使新材料能在室溫下導通,並成為一個能在室溫下偵測的氣體感測器。
實驗是以溶膠凝膠法製備二氧化鈦,以鈦酸異丙脂有機溶液為前驅物,並混不同濃度之異丙醇,加入數滴甲醇來分散與控制粒徑,之後與不同濃度奈米碳管混合,加入去離子水水解聚合反應後,將混配好的溶液以旋轉塗佈的方式生成TiO2/CNTs薄膜。在室溫下乾燥後,接著以400°C溫度燒結, 在材料鑑定方面,以SEM 、TEM、Raman、XRD、AFM、電性量測系統等儀器來分析膜的成分、結構與表面型態以及電性特性。
實驗結果顯示,本實驗以溶膠凝膠法合成的二氧化鈦可成左漸]覆奈米碳管,並呈現二氧化鈦如珍珠項鍊狀附在碳管上的型態,電性量測顯示出二氧化鈦與碳管合成後降低了感測器的操作溫度,使實驗在室溫下對一氧化碳氣體即有感測效果。
In recent years, carbon nanotubes have become intriguing materials, and have been studied in many fields of their unique properties such as high ratio of length to diameter, super strength, nano-scale structure, hydrogen storage, property of semiconductor and unknowable fields. In this experiment, the elaboration of an inorganic matrix containing embedded carbon nanotubes leads to a new nanocomposite. The possible applications of this CNTs nanocomposite are the intrinsic mechanical or electrical properties and gas sensing etc. In the study, the electrical properties of the new nanocomposite material have been examined. The carbon nanotubes provide the large surface area that can enhance the adsorption properties of gases and the conductivity at the room temperature for gas sensing.
In this study, TiO2 is prepared by sol-gel technique. The precursor was obtained by mixing titanium tetraisopropoxide and isopropyl alcohol. After mixing, the CNTs add and mix in the sol-gel solution. The methanol and deionic water are used to control the particle size and precipation of TiO2. Thin films of TiO2 and CNTs/TiO2 were deposited by a spin-coating method onto pre-cleaned silicon and alumina substrates. The CNTs/TiO2 thin film calcined in an electric furnace in air to 400℃. SEM, TEM, XRD, AFM and Raman instruments were examined the compositional and structural properties of these specimens.

Experiments results show the successful coating of TiO2 on the surface of carbon nanotubes by a sol-gel method. The surface morphology of TiO2 coated CNTs are likes the pearl necklace structure. The process of CNTs-hybridization shows the decreasing the sensing operation temperature and the enhancement the gas sensitivity for detecting CO gas at room temperature.
Abstract I
中文摘要 III
Contents IV
List of Figures VI
List of Tables VIII
Chapter 1 Introduction
Chapter 2 Literature Review
2.1 Nanoparticles
2.1.1 The Properties of Nanoparticles
2.2 Carbon Nanotubes
2.2.1 Introduction
2.2.1 Applications of Nanotubes
2.3 Titanium Dioxides (Titania)
2.4 Synthesis of Titanium Dioxides
2.4.1 Sol-Gel Method
2.4.2 Chemical Deposition Method
2.4.3 Gas Evaporation Method
2.5 Sol-Gel Method
2.5.1 Sol-Gel Technique
2.5.2 Sol-Gel Introduction
2.6 Electrical Measurement
2.6.1 The Classification of Semiconductor Gas Sensor Type
2.6.2 Conducting-Tip AFM Measurements of Semicondu-cting Nanotubes
Chapter 3 Experimental
3.1 Sample Preparation
3.1.1 Preparation of Nanotubes
3.1.2 Sol-Gel Preparation
3.2 Analytical Methods
A. Scanning Electron Microscopy (SEM) Examination
B. Transmission Electron Microscopy (TEM) Examination
C. X-Ray Diffraction (XRD) Examination
D. Raman Scattering Spectroscopy(RS)Examination
E. Electrical Characterization Measurement
F. Atomic Force Microscope (AFM) Examination
Chapter 4 Results and Discussion
4.1 Morphological Microstructures
4.1.1 SEM Analysis
4.1.2 TEM Analysis
4.2 Structure and Analysis
4.2.1 XRD Analysis
4.3 Raman Analysis
4.4 Electrical properties Analysis
4.5 AFM Electrical Measurements
Chapter 5 Conclusions
Chapter 6 Prospect of Future Study
References
[1]S. Iijima, Nature, 354 (1991) 56.
[2]J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, L. Forr_o, Adv. Mater. 11 (1999) 161.
[3]S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green,Nature (London) 372 (1994) 159.
[4]I. Musa, M. Baxendale, G.A.J. Amaratunga, W. Eccleston, Synth. Met. 102 (1999) 1250.
[5]P. Vincent , A. Brioude, C. Journet, S. Rabaste, S.T. Purcell, J. Le Brusq,J.C. Plenet, Journal of Non-Crystalline Solids 311 (2002) 130–137
[6]R. Birringer, Materials Science and Engineering A, 117, (1989) 33-43.
[7]Xiaodong Wang, Sinclair S. Yee and W. Patrick Carey, Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensor, Sensors and Actuators B, 24-25, (1995) 454-457.
[8]R.F.Ziolo, U.S.Patent,4,474 (1984) 866.
[9]J. Woltersdorf, A.S. Nepijko and E.Pipple, Surf .Sci.,106(1981)64.
[10]D. l. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos and P. L. McEuen, Nature, 389 (1997) 699.
[11]Zujin Shi, Yongfu Lian, Fu Hui Liao, Xihuang Zhou, Zhennan Gu, Y, Zhang, S. Iijima, Hongdong Li, Kwok To Yue and Shu-Lin Zhang, Journal of physiscs and Chemistry of Solids, 61, (2000) 1031-1036.
[12]Huang Zeng, Ling Zhu, Guangning Hao and Rongsheng Sheng, Carbon, Vol. 36, 259-261.
[13]Masako Yudasaka, Minfang Zhang and Sumio Iijima, Chemical Physics Letter, 323, (2000) 549-553.
[14]Young Chui Choi, Dong Jae Bae, Young Hee Lee, Byung Soo Lee, In Taek, Won Bong Choi, Nae Sung Lee and Jong Min Kim, Synthetic Metals, 108, (2000) 159-163.
[15]Qing Zhang, S. F. Yoon, J. Ahn, B. Gan, Rusli and M. B. Yu, Journal of Physics and Chemistry of Solids, 61, (2000) 1179-1183.
[16]M.S. Dresselhaus, G. Dersselhaus, R. Saito, “Physics of Carbon Nanotubes”, Carbon 33 (7), (1995) 883-891.
[17]I.W. Chiang, B.E. Brinson, A.Y. Huang, etc., “Purification and Characterization of Single-wall Nanotubes (SWNTs) Obtained from the Gas-phase Decomposition of CO (HiPco Process)”, J. Phys. Chem. B, 105 (2001) 8297-8301.
[18]Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-Assigned Optical Spectra of Single- walled Carbon Nanotubes. Science 2002, 298, 2361–2366.
[19]Bachilo, S. M.; Balzano, L.; Herrera, J. E; Pompeo, F.; Resasco, D. E.; and Weisman, R. B. Narrow (n,m)-Distribution of Singlewalled Carbon Nanotubes Grown Using a Solid Supported Catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.
[20]http://www.labs.nec.co.jp/Eng/innovative ,2003/10/08,NEC.
[21]Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. M. Structure- Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly. Science 2003, 302 (5650), 1545–1548.
[22]Q. Wang, C. Zhu, W. Liu, T. Wu, “Hydrogen Storage by Carbon Nanotube and Their Films under Ambient Pressure”, International J. of Hydrogen Energy, 27 (2002) 497-500.
[23]Ming-Chih Hsu, 2003 , “Gas Sensing Behavior at Room Temperature of Nanostructured CNTs/SnO2 Hybrid Sensors”, M.S. Thesis, Department of Materials Engineering, Tatung University.
[24]G. Sberveglieri, L.E. Depero, A novel method for preparation of nanosized TiO2 thin films, J. Adv. Mater. 8 (4)(1996) 334–337.
[25]Lili Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto, A. Fujishima, J. Photochem. Photobiol., A 98 (1996) 79.
[26]R.W. Matthews, J. Chem. 40 (1987) 667.
[27]B. O’Regan, M. Gratzel, Nature 353 (1991) 737.
[28]A. Mills, R.H. Davies, D. Worsley, Chem. Soc. Rev. 22. (1993) 417.
[29]D.F. Ollis, H. Al-Ekabi Eds. , Photocatalytic Purification of Water and Air, Elsevier, Amsterdam, 1993.

[30]F. Sabin, T. Turk, A. Vogler, J. Photochem. Photobiol., A 63 (1992) 99.
[31]J.L. Keddie, E.P. Giannelis, Mater. Res. Symp. Proc. 180 (1990) 717.
[32]F. Czerwinski, J.A. Szpunar, Thin Solid Films 289 (1996) 213.
[33]The-Yu Hsu, 1993 ,“The Study of Nanocrystalline TiO2-Based Gas Sensors”, M.S. Thesis, Department of Materials Engineering, Tatung University.
[34]G.W. Scherer, C.J. Brinker, Sol-gel Science: the Physics and Chemistry of Sol-gel, Boston Academic Press, Boston MA, 1990.
[35]A. Yasumori, H. Shinoda, Y. Kameshima, S. Hayashi, K. Okada, J. Mater. Chem. 11 (2001) 1253.
[36]Butler, G.B.; Oriscoll, K.F.; Wilkes, G.L. JMS-Rev. Macromol. Chem. Phys. 1994, C34(3), 325-373.
[37]Robertson, M.A.F. Ph.D. Thesis, University of Calgary, 1994.
[38]Yeager, H.J.; Eisenberg, A. in: Perfluorinated Ionomer Membranes; eds. A. Eisenberg and H.L Yeager, ACS Symp. Ser. No.180, (American Chemical Society: Washington, DC, 1982) pp. 1-6, 41-63.
[39]Mauritz, K.A.; Storey, R.F.; Jones, C.K. in: Multiphase Polymer Materials: Blends, Ionomers, and Interpenetrating Networks; eds. L.A. Utracki and R.A. Weiss, ACS Symp. Ser. No. 395; (American Chemical Society: Washington, DC, 1989) p. 401-417.

[40]Mauritz, K.A.; Hora, C.J.; Hopfinger, A.J. in: Ions in Polymers; ed. A. Eisenberg, ACS Advances in Chemistry Ser. No. 187 (American Chemical Society: Washington, DC, 1980) pp. 124-154.
[41]Mauritz, K.A. JMS-Rev. Macromol. Chem. Phys. 1988, C28(1), 65-98.
[42]A. Hagfeldt, M. Gratzel, Acc. Chem. Res. Vol. 33, 269 (2000).
[43]Chuan-Yi,Wu, 2003, “The Gas Properties of Nanocrystalline WO3-Based Hybrid Systems”, Ph.D Thesis, Department of Materials Engineering, Tatung University.
[44]P.G. Collins, K. Bradley, M. Ishigami and A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science, 287 (2000) 1801-1804.
[45]S.J. Tans and C. Dekker, Molecular transistors: Potential modulations along carbon nanotubes, Nature, 404 (2000) 834-835.
[46]P.L. McEuen, Single-wall carbon nanotubes, Physics World, June (2000)31-36
[47]M. Bockrath, D.H. Cobden, J. Lu et al., Luttinger-liquid behaviour in carbon nanotubes, Nature, 397 (1999) 598-601
[48]M. Bockrath, D.H. Cobden, P.L. McEuen et al., Single-electron transport in ropes of carbon nanotubes, Science, 275 (1997) 1922-1925.
[49]M. Freitag, M. Radosavljevic, Y. Zhou, A.T. Johnson and W.F. Smith, Controlled creation of a carbon nanotube diode by a scanned gate, (2001)
[50]A. Y. Cao, X. F. Zhang, C. L. Xu, J. Mater. Res.1 6(2001)3107-3110.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊