跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 09:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:錢瑞龍
研究生(外文):Jui-long Chien
論文名稱:利用醋酸電漿處理聚乳酸-聚甘醇酸及不織布增進材料表面之細胞貼附性
論文名稱(外文):Acetic Acid Plasma Treatment of PLGA and Nonwoven Fabric for Improving ES-Cell adhesion
指導教授:陳克紹陳克紹引用關係
指導教授(外文):Ko-Shao Chen
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:75
中文關鍵詞:聚乳酸聚甘醇酸醋酸電漿不織布幹細胞細胞貼附性
外文關鍵詞:acetic acidcell adhesionnonwovenplasmaPLGAstem cell
相關次數:
  • 被引用被引用:3
  • 點閱點閱:471
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用低溫電漿系統聚合薄膜來改善聚乳酸聚甘醇酸及聚丙烯不織布的缺點,使其更具有生醫應用性。首先利用Ar低溫電漿活化材料表面,之後再利用低溫電漿聚合醋酸薄膜於材料表面上,增進聚乳酸聚甘醇酸及聚丙烯不織布這兩樣多孔性材料表面細胞貼附性。由電子顯微鏡的觀察佐證,可以發現醋酸膜成功沉積在材料表面。而由紅外線光譜儀及電子能譜儀的數據可發現,材料表面在經過醋酸電漿膜的沉積後,出現許多官能機,例如,C-C at 1600 cm-1, C-O at 1125 cm-1, C-H at 1424 cm-1, –OH at 3050~3500 cm-1 and C=O at 1700~1720 cm-1.而由胚胎幹細胞培養實驗及組織切片的觀察得知,材料表面經醋酸電漿聚合沉積後,其細胞生長情形都明顯提升。而由親水性變化表示,材料在經醋酸電漿聚合沉積後,其親水性皆獲得明顯改善,在聚對苯二甲酸乙二醇酯(PET)上沉積醋酸膜後,表面水接觸角由67。下降到7。。不織布在經過醋酸電漿處理後也具有吸水性。而由衰退實驗結果發現材料表面親水性在經長時間放置後,仍具有相當的親水性,證明醋酸膜衰退表現並不明顯。而由生物相容性的實驗證明,材料在經過醋酸電漿處理後,會增進胚胎幹細胞在表面貼附及生長的表現,因此可期待利用醋酸電漿聚合處
理來增進材料的生醫特性。
In this study , the polymer film of acetic acid deposited on the substrate such PP-nonwoven、 poly (lactide-co-glycolide)PLGA by plasma polymerization to improve the cell attachment . From the SEM micrographs, it demonstrated that acetic acid plasma film was successfully deposited onto PLGA scaffolds and PPnonwoven. From the FTIR spectrum it could be observed that there were several adsorption peak of acetic acid film appeared or enhanced such as C-C at 1600 cm-1, C-O at 1125 cm-1, C-H at 1424 cm-1, –OH at 3050~3500 cm-1 and C=O at 1700~1720 cm-1 were reduced. From the results of biopsy and cell adhesion, ES-cell adhesion and proliferate on the modification scaffolds is better than control. The results of water contact angle showed that the surface of acetic acid plasma treated materals were more hydrophilic. The water contact angle of PET film after acetic acid plasma treated was reduced (aap:67° to 7°). After long-term aging time, the PET film after acetic acid plasma treated still keep hydrophilic. In addition, the biocompatibility test demonstrated that ES stem cell may attach and proliferate on modified scaffolds, and it further reveals that acetic acid plasma coated is an effective treatment for improvement of
stem cell adhesion on different substrates.
ENGLISH ABSTRACT I
CHINESE ABSTRACT II
ACKNOWLEDGEMENT III
LIST OF FIGURES VI
LIST OF TABLES VII
Introduction………………………………………………………………………………..1
1.1 Polymer surface modification…………………………………………………....2
1.2 Plasma theory…………………………………………………………………….4
1.2.1 Plasma polymerization …………………………………………………..5
1.2.2 Plasma modification………………………………………………….. ......8
1.2.3 Plasma system and process parameters…………………………………...9
1.3 Biocompatibility of biomaterials………………………………………………..11
1.3.1 Characterizing biocompatibility of biomaterials…………………….......14
1.3.2 Homopolymers…………………………………………………………..16
1.3.3 Biodegradable polymers…………………………………………………18
1.4 Porous Scaffolds 19
1.4.1 Poly (DL-lactic-co-glycolic acid)(PLGA)……………………………….19
1.4.2 Polypropylene nonwoven………………………………………….…….21
1.5 Emberyonic stem cell…………………………………………………………...23

Experiment……………………………………………………………………………….27
2.1 Monomers and Materials………………………………………………………..28
2.2 Flowchart of various composite scaffolds………………………………………29
2.3 PLGA scaffolds preparation…………………………………………………….30
2.4 Plasma treatment………………………………………………………………..30
2.4.1 Argon Plasma treatment …………………………………………………30
2.4.2 Acetic acid plasma deposition treatment………………………………...31
2.5 Characters tics analysis…………………………………………………………31
2.5.1 Scanning electron microscope…………………………………………...31
2.5.2 FTIR characterization analyses………………………………………….33
2.5.3 Electron spectroscopy for chemical analysis ……………………………34
2.5.4 Water contact angle analyses ……………………………………………34
2.5.5 Water adsorption test……….……………………………………………34
2.6 Cell culture test…………………………………………………………………35
2.6.1 MTT assay……………………………………………………………….35
2.6.2 Cell culture and morphology observation……………………………….35
2.6.3 Histological staining……………………………………………………..36
Results and Discussion…………………………………………………………………...37
3.1 Flowchart of PLGA and PPnonwoven analysis………………………………...38
3.1.1 Wettability of surface modified PLGA and PPnonwoven……………….39
3.1.2 Aging effect of surface hydrophilicity…………………………………...39
3.1.3 SEM morphological observation………………………………………...43
3.1.4 FTIR characterization of acetic acid deposition film……………………47
3.1.5 Chemical structures of acetic acid deposition film……………………...47
3.2 Cell culture test………………………………………………………………….53
3.2.1 Cell morphology observation ……………………………………………53
3.2.2 SEM morphological observation………………………………………...56
3-2-3 Histomphometry………………………………………………………...56
3-2-4 MTT test………………………………………………………………...59
CONCLUSION……………………………………………………………………..62
REFERENCE……………………………………………………………………….65



LIST OF FIGURES

Fig. 1-1 Typical regions of average electron density and energy that are representative of plasma found in various sources…………………………………………………………..7
Fig. 1-2 Schematic diagram of a bell jar reactor (A)vaccum chamber, (B)RF electrode, (C)grounded electrode........................................................................................10
Fig. 1-3 A summary of plasma process parameters that affect the neture and quality of the plasma deposited polymer coating……………………………………………………….13
Fig. 1-4 Biomaterials properties that affect host response……………………………….15
Fig. 1-5 Homopolymers used in medicine……………………………………………….17
Fig. 1-6 Polymer structure of Poly(lactide-co-glycolide)………………………………..20
Fig. 1-7 Embryonic origins and developmental potentials of specialized tissues within the human body………………………………………………………………………………24
Fig. 2-2 Schematic diagram of Argon plasma system……………………………………32
Fig. 2-3 Schematic diagram of acetic acid plasma system……………………………….32
Fig. 3-1 Aging effect of the PET surface hydrophilicity…………………………………42
Fig. 3-2 The SEM photomicrographs of acetic acid plasma modified PP-nonwoven…...44
Fig. 3-3. The SEM photomicrographs of acetic acid plasma modified PP-nonwoven fibers……………………………………………………………………………………...45
Fig. 3-4 The SEM photomicrographs of acetic acid plasma modified PLGA …………..46
Fig. 3-5 ATR-FTIR spectra of acetic acid plasma modified PLGA……………………...48
Fig. 3-6 C1s spectra of acetic acid film (10W10min )…………………………………...50
Fig. 3-7 C1s spectra of acetic acid film (30W10min )…………………………………...51
Fig. 3-8 C1s spectra of acetic acid film (50W10min )…………………………………...52
Fig. 3-9 Photomicrographs of ES cell grown on various PP-nonwoven substrates……...54
Fig. 3-10 Photomicrographs of ES cell grown on various PLGA scaffolds……………...55
Fig. 3-11 The SEM photomicrographs of the ES-cell growth on the PLGA surface treated by aap…………………………………………………………………………………….57
Fig. 3-12 Histological of ES cell grown on various PP-nonwoven substrates surface treated by aap after 7day of cultivation…………………………………………………..58
Fig. 3-13 The MTT assay of surface acetic acid plasma modified PP-nonwoven scaffolds…………………………………………………………………………………..60
Fig. 3-14 The MTT assay of surface acetic acid plasma modified PLGA scaffolds……..61





LIST OF TABLES

Tab. 1-1 Some characteristics of the in vivo microenvironment…………………………12
Tab. 3-1 Wettability of plasma treated substrates………………………………………...40
Tab. 3-2 The wettability of PP-nonwoven after treatment……………………………….41
Tab. 3-3 ESCA survey scan spectra of acetic acid film with different conditions….……49
[1] Ratner BD, Chilkoti A, Lopez GP. Plasma deposition and treatment for
biomaterial applications. In: d’Agostino R, editor. Plasma deposition,
treatment and etching of polymers. San Diego: Academic Press; 1990.
p.463–516.
[2] Favia P, Sardella E, Gristina R, Milella A, d’Agostino R.
Functionalization of biomedical polymers by means of plasma
processes: plasma treated polymers with limited hydrophobic recovery
and PE-CVD of –COOH functional coatings. J Photopolym Sci Technol
2002;15:341–50.
[3] Favia P, Sardella E, Gristina R, d’Agostino R. Novel plasma processes
for biomaterials: micro-scale patterning of biomedical polymers. Surf
Coat Technol 2003;169:707–11.
[4] Daw R, O’Leary T, Kelly J, Short RD, Cambray-Deakin M, Devlin AJ,
Brook IM, Scutt A, Kothari S. Molecular engineering of surface by
plasma copolymerization and enhanced cell attachment and spreading.
Plasma polym 1999;4:113–32.
[5] Garrison MD, Luginbu hl R, Overney RM, Ratner BD. Glow ‥
discharge plasma deposited hexafluoropropylene films: surface
67
chemistry and interfacial material properties. Thin Solid Films
1999;352:13–21.
[6] Wu YJ, Timmons RB, Jen JS, Moloch FE. Non-fouling surfaces
produced by gas phase pulsed plasma polymerization of an ultra low
molecular weight ethylene oxide containing monomer. Colloid Surf B
2000;18:235–48.
[7] Gengenbach TR, Chatelier RC, Griesser HJ. Universal correlation
of nitrogen 1s and oxygen 1s photoelectron binding energies with
chemical composition in nitrogen-containing plasma polymers. Plasma
Polym 1999;4:283–307.
[8] Maroudas NG. Adhesion and spreading of cells on charged surfaces. J
Theor Biol 1975;49:417–42.
[9]Lombello CB, Malmonge SM, Wada MLF. PolyHEMA and
polyHEMA-poly(MMA-co-AA) as substrate for culturing Vero cells. J
Mater-Sci Mater M 2000;11:541–6.
[10] Sugimoto Y. Effect on the adhesion and locomotion of mouse
fibroblasts by their interacting with differently charged substrates:
a quantitative study by ultrastructural method.Exp Cell Res
1981;135:39–45.
68
[11] Lee JH, Lee JW, Khang G, Lee HB. Interaction of cells on chargeable
functional group gradient surfaces. Biomaterials 1997;18:351–8.
[12] Gupta B, Plummer C, Bisson I, Frey P, Hilborn J. Plasmainduced
graft polymerization of acrylic acid onto poly(ethylene terephthalate)
films: characterization and human smooth muscle cell growth on
grafted films. Biomaterials 2002;23:863–71.
[13] Tidwell CD, Belu AM, Ratner BD, Tarasevich B, Atre S, Allara
DL. Transactions of the Society of Biomaterials; 23rd Annual Meeting,
vol. 20; 1997. p. 203.
[14] France RM, Short RD, Dawson RA, Macneil S. Attachment of human
keratinocytes to plasma co-polymers of acrylic acid/1,7 octadiene and
allylamine/1,7 octadiene. J Mater Chem 1998;8: 37–42.
[15] Daw R, Candan S, Beck AJ, Devlin AJ, Brook IM, Macneil S,
Dawson RA, Short RD. Plasma copolymer surfaces of acrylic acid/1,7
octadiene: surface characterisation and the attachment of ROS 17/2.8
o s t eo b l a st - li k e c e ll s. Bioma t e r i a l s 1998;19 :1717–25.
[16] Ertel SI, Chilkoti A, Horbett TA, Ratner BD. Endothelium cell growth
on oxygen-containing films deposited from radiofrequency plasma: the
role of surface carbonyl groups. J Biomat-Sci Polym E 1991;3:163–83.
69
[17] Rafik M, Mas A, Elharfi A, Schue F. Modification de membrane PVDF
par plasma d’acide acrylique et de nonafluorobutylethylene. Eur Polym
J2000;36:1911–9.
[18] Curtis ASG, Gadegaard N, Alby MJ, Riehle MO, Wilkinson CDW,
Aitchison G. Cells react to nanoscale order and symmetry in their
u r r o u n d i n g s . I E E E T N a n o b i o s c i 2 0 0 4 ; 3 : 6 1 – 5 .
[19] Kelly JM, Short RD, Alexander MR. Experimental evidence of a
relationship between monomer plasma residence time and carboxyl
group retention in acrylic acid plasma polymers. 2003;44:3173–6.
[20] Sciarratta V, Vohrer U, Hegemann D, Muller M, Oehr C. Plasma
functionalization of polypropylene with acrylic acid. Surf Coat Technol
2003;174–175:805–10.
[21] Konig U, Nitschke M, Menning A, Ebert G, Pilz M, Arnhold C,
Simon F, Adam G, Werner C. Durable surface modification of
poly(tetrafluoroethylene) by low pressure H2O plasma treatment
followed by acrylic acid graft polymerization. Colloid Surf B2002 ;
24:63–71.
[22] Zhang Z, Chen Q, Knoll W, Fo rch R. Effect of aqueous solution ‥
on functional plasma polymerized films. Surf Coat Technol 2003; 174–
70
175:588–90.
[23] Alexander MR, Duc TM. A study of the interaction of acrylic
acid/1,7-octadiene plasma deposits with water and other solvents.
Polymer 1999;40:5479–88.
[24] Jing Z., Xiangfen F., Hankun X., Yunchen S., Tianshu P., Ying G., Thin
Solid Film, 435, (2003) 108-115.
[25] Suzuki M., Kishida A., Iwata H., and Ikada Y.., Macromolecules., 19,
(1986) 1804.
[26] H. Iwate, A. Kishida, M. Suzuki, Y. Hata, and Y. Ikada., J. Appl. Polym.
Sci., Part A. Polym. Chem., 26, (1988) 3309.
[27] Y. L. Hsien, and M. Wu., J. Appl. Polym. Sci., 43, (1991) 2067.
[28] Bell, A. T., (1974) Fundamentals of Plasma Cheimistry. In
Techniques & Applications of Plasma Chemistry (J.R. Hollan and A.T.
Bell, eds.) Wiley, New York.
[29] Chapman, B. (1980) Glow Discharge Processes-Sputtering and Plasma
Etching. Wiley, New York. (a) p. 149.
[30] Min-Shyan Sheu, David M. Hudson and Ih-Houng Loh, Advanced
Surface Technology, P865
[31] Ekaterina Radeva, (1997) Thin plasma-polymerization layers of
hexamethyldisilozane for acoustoelectronic humidity sensors, Sensors
71
and Actuators B 44, 275-278.
[32] M.L.P. da Silva, I.H. Tan, A.P. Nascimento Filho, E. Galeazzo, D.P.
Jesus, (2003) Use of plasma polymerized highly hydeophobic
hezamethyldisslazane (HMDS) films for sensor development, Sensors
and Actuators B91, 362-369.
[33] Kyoichi Yamamoto, Takahiro Harada, Noritoshi Tomikawa, Haruo
Uyama, Sung-Chae Yang, Hiroshi Fujiyama, (1999) Temperature
measurement of polymer substrates during plasma irradiation, Thin
Solid Films 345,94-98.
[34] Zhai Maolin, Yi Min, Shu Jian, Wei Jinshan, Ha Hongfei, (1998)
Radiation preparation and diffusion behavior of thermally reversible
hydrogels, Radiat. Phys. Cehm. Vol. 52, Nos 1-6, 313-317.
[35] R. d`Agostino, F. Cramarossa, and F. Fracassi, in Plasma Deposition,
Treatmcent, and Etching of Polymers, Ed. R. d`Agostino, Academic
Press, New York, 1990, pp.95-162.
[36] E.Kay, J . Coburn, and A. Dilks, Top. Curr. Chem. 94,1(1980)
[37] Plasma Deposition, Treatmcent, and Etching of Polymers, Ed. R.
d`Agostino, Academic Press, New York, 1991
[38] Yasuda H, in Plasma Polymerization, Academic Press, New York, 1985
72
[39] Plasma Polymerization, Ed.M. Shen and A. T. Bell, ACS Symposium
Series, Vol. 108, Washington, DC,1979.
[40] B.D Ratner, A.S. Hoffman, F.J. Schoen, and J.E.Lemons. Biomaterals
Science: An Introduction to Materials In Medicine. San Diego:
Academic Press,1996
[41] S. Lakshmi , D.S. Katti , C.T. Laurencin, Advanced Drug Delivery
Reviews 55 (2003) 467–482
[42] Khang,G, Kang, Y., Lee, H., and Park, J., Biomed.Mater.Eng., 6, (1996)
335
[43] Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity,
biocompatibility and clinical applications of polylactic acid copolymers.
Biomaterials 1996;17:93–102.
[44] Vert M, Li SM, Speniehauer G, Guerir P. Bioresorbability and
biocompatibility of aliphatic polyesters. J Mater Sci Mater Med
1992;3:432–46.
[45] Cai Q, Bei JZ, Wang SG. Study on the biocompatibility and
degradation behaviour of poly(l-lactide-co-glycolide) in vitro and
in vivo. Chin J Funct Polym 2000;13:249–54.
[46] Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J.
73
Physicochemical foundations and structural design of hydrogels
in medicine and biology. Ann Rev Biomed Eng 2000;2:9–27.
[47] Cohen S, Yoshioka T, Lucarelli M, Hwang LH, Langer R.
Controlled delivery systems for proteins based on poly(lactic/
glycolic acid) microspheres. Pharm Res 1991;8:713–20.
[48] Freed LE, Gordana VN, Langer R. Biodegradable polymer
scaffolds for tissue engineering. Biotechnology 1994;12:689–93.
[49] Okada H, Heya T, Ogawa Y ,Shimamoto T, One-month release
injectable microcapsules of a LHRH agonist leuprolide acetate for
treating experimental endometriosis in rats, J. Pharmacol. Exp.
Ther. 244 (2) (1988) 744±750.
[50] J. Herrman, R. Bodmeier, Somatostatin containing biodegradable
microspheres prepared by a modi®ed solvent evaporation method
based on w/o/w-multiple emulsions, Int. J. Pharm. 126 (1995) 129±
138.
[51] J. Herrman, R. Bodmeier, Biodegradable somatostatin acetate
containing microspheres prepared by various aqueous and nonaqueous
solvent evaporation techniques, Eur. J. Pharm. Biopharm.45 (1) (1998)
75±82.
74
[52] Y.S. Lin, T.L. Ho, L.H. Chiou, Microencapsulation and controlled
release of insulin from polylactic acid microcapsules, Med. Devices
Art. Org. 13 (3,4) (1986) 187±201.
[53] Hasirci V, Berthiaume F, Bondre SP, et al. Expression of
liver-specific functions by rat hepatocytes seeded in treated
poly(l-lactic-co-glycolic) acid biodegradable foams. Tissue Eng
2001:4:385.
[54] Hollahan JR, StaffordBB, Falb RD, Payne ST. Attachment of
amino groups to polymers surfaces by radiofrequency plasmas.
J Appl Polym Sci 1969;13:807–16.
[55] Inagaki N, Tasaka S, Miyazaki H. Sulfonic acidgroup-conta ining
thin films preparedby plasma polymerization. J Appl Polym Sci
1989;38:1829–38.
[56] Yang J, Bei JZ, Wang SG. Improving cell affinity of poly(d,llactide)
film modified by anhydrous ammonia plasma treatment.
Polym Adv Technol 2002;13: 220–6.
[57]Y.P. Lee, P.A. France, A. Radomyselskiy, Durably wettable, liquid
pervious webs, PCT Patent WO 00y16913, Issued March 30, 2000.
[58] Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit
75
M,et al. Differentiation of human embryonic stem cells into embryoid
bodies
[59] Kirschstein R, Skirboll LR. Stem cells: scientific progress and future
research directions. National Institutes of Health [online publication]
2001[cited 2002 Dec 24].
[60] Fuchs E, Segre JA. Stem cells: a new lease on life. Cell
2000;100:143-55.
[61] Ying QL, Nicols J, Evans EP, Smith AG. Changing potency by
spontaneous fusion. Nature 2002;416:545-8.
[62] Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, et
al.Bone marrow cells adopt the phenotype of other cells by
spontaneous cell fusion. Nature 2002;416:542-5.
[63] Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence
for developmental plasticity of adult hematopoietic stem cells. Science
2002;297:2256-9.compromising the three embryonic germ layers. Mol
Med 2000;6:88-95.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top