跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/12 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:韓松諭
研究生(外文):Song-Yu Han
論文名稱:以混合H2/H∞最佳化設計分散可變結構控制及其應用於自走車之研究
論文名稱(外文):Mixed H2/H∞ Design for a Decentralized Discrete Variable Structure Control with Application to Mobile Robots
指導教授:黃志良黃志良引用關係
指導教授(外文):Chih-Lyang Hwang
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:52
中文關鍵詞:分散控制H∞最佳化可變結構控制自走車.H2 最佳化
外文關鍵詞:Decentralized controlH2 -optimizationH∞-optimizationMobile robot.Variable structure control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文是實現經由混合 H2/H∞最佳化設計分散數位可變結構控制。首先,是將輸出誤差和權重控制輸入H2標準極小化達成以最少能量消耗確保有限追蹤誤差。選擇合適權重函式能減少干擾對控制訊號的影響。然而,因為各軸動態互相影響、模組化的誤差及負載所造成的輸出干擾會降低系統性能或甚至使系統不穩定。在這種情況下,使輸出干擾和輸出誤差間權重敏感性函數H∞標準極小化降低輸出干擾的影響。並且,選擇適當權重可以非常有效抵抗特定的輸出干擾。不需要解戴分泰方程式,特別對低階系統有計算的優勢。最後加入切換模式控制提高系統性能,穩定性的分析是用李雅普諾夫穩定法則。最後用電腦模擬和自走車實驗評估方法的有效性。
In this thesis, a decentralized discrete variable structure control via mixed H2/H∞design was developed. In the beginning, the H2 norm of output error and weighted control input was minimized to obtain a control such that smaller energy consumption with bounded tracking error was assured. In addition, a suitable selection of this weighted function (connected with frequency) could reduce the effect of disturbance on the control input. However, an output disturbance caused by the interactions among subsystems, modeling error, and external load deteriorated system performance or even brought about instability. In this situation, the H∞ norm of weighted sensitivity between output disturbance and output error was minimized to attenuate the effect of output disturbance. Moreover, an appropriate selection of this weighted function (related with frequency) could reject the corresponding output disturbance. No solution of Diophantine equation was required; the computational advantage was especially dominated for low-order system. For further improving system performance, a switching control for every subsystem was also designed. The proposed control (mixed H2/H∞ DDVSC) is a three-step design method. The stability of the overall system was verified by Lyapunov stability criterion. The simulations and experiments of mobile robot were carried out to evaluate the usefulness of the proposed method.
CONTENT
ABSTRACT----------------------------------------------------------------------i
摘要-------------------------------------------------------------------------ii
ACKNOWLEDGMENT--------------------------------------------------------------iii
CONTENTS---------------------------------------------------------------------iv
LIST OF FIGURES AND TABLE-----------------------------------------------------v
Chapter 1 INTODUCTION---------------------------------------------------------1
Chapter 2 PROBLEM FORMULATION-------------------------------------------------3
Chapter 3 MIXED DESIGN FOR DECENTRALIZED DISCRETE VARIABLE STRUCTURE CONTROL-8
3.1 Minimization of ---------------------------------------------------------8
3.2 Minimization of --------------------------------------------------------10
3.3 Switching Control for Enhanced Robustness--------------------------------12
Chapter 4 SIMULATION AND DISCUSSION------------------------------------------16
Chapter 5 APPLICATION TO MOBILE ROBOT----------------------------------------20
5.1 Experimental Setup-------------------------------------------------------20
5.2 Response of CLMR without Load--------------------------------------------21
5.3 Trajectory Tracking of CLMR----------------------------------------------21
Chapter 6 CONCLUSIONS--------------------------------------------------------22
APPENDIXES------------------------------------------------------------------24 REFERENCES------------------------------------------------------------------26
REFERENCES
[1] L. T. Grujic and D. D. Siljak, “ Asymptotic stability and instability of large scale systems,” IEEE Trans. Automat. Contr., vol. 18, no. 6, pp. 636-645, 1973.
[2] D. D. Sijak, Large-Scale Dynamic Systems: Stability and Structure. North-Holland, 1978.
[3] W. S. Chan and C. A. Desoer, “Eigenvalue assignment and stabilization of interconnected systems using local feedback,” IEEE Trans. Automat. Contr., vol. 24, no. 2, pp. 312-317, 1979.
[4] Y. H. Chen, “ Decentralized robust control system design for large-scale uncertain systems,” Int. J. Contr., vol. 111, pp. 1195-1205, 1988.
[5] C. S. Tseng and B. S. Chen, “ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 6, pp. 795-809, 2001.
[6] J. H. Lee, and H. Hashimoto, “Controlling mobile robots in distributed intelligent sensor network,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 890-902, 2003.
[7]X. Chen, K. Watanabe, K. Kiguchi and K. Izumi, “An ART-based fuzzy controller for the adaptive navigation of a quadruped robot,” IEEE/ASME Trans. Mechatron., vol. 7, no. 3, pp. 318-328, 2002.
[8]J. C. Doyle, K. Glover, P. P. Khargonekar, and B. Francis, “State-space solutions to standard and problems,” IEEE Trans. Automat. Contr., vol. 34, no. 8, pp. 831-847, 1989.
[9] B. S. Chen and W. Zhang, “Stochastic control with state-dependent noise,” IEEE Trans. Automat. Contr., vol. 49, no. 1, pp. 45-57, 2004.
[10]J. Chen, S. Hara, and G. Chen, “Best tracking and regulation performance under control energy constraint,” IEEE Trans. Automat. Contr., vol. 48, no. 8, pp. 1320-1336, 2003.
[11]C. L. Hwang and C. Jan, “Optimal and reinforced robustness designs of fuzzy variable structure tracking control for a piezoelectric actuator system,” IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 507-517, 2003.
[12]Y. Hung, W. Gao and J. C. Hung, “Variable structure control: A survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp.2-22, 1993.
[13]K. D. Young, V. I. Utkin and “A control Engineer’s guide to sliding mode control,” IEEE Trans. Contr. Syst. Technol., vol. 7, no. 3, pp. 328-342, 1999.
[14]K. Furuta and Y. Pan, “Variable structure control with sliding sector,” Automatica, vol. 36, no. 3, pp. 211-228, 2000.
[15]C. L. Hwang, “Robust discrete variable structure control with finite-time approach to switching surface,” IFAC, Int. J. of Automatica, vol. 38, no. 1, pp. 167-175, 2002.
[16] H. K. Khalil, Nonlinear Systems. Prentice-Hall, Inc. 2nd Edition, 1996.
[17]M. Vidyasagar, Controller System Synthesis – A factorization approach. MIT Press, 1995.
[18] B. A. Francis, A Course in Control Theory. Lecture Notes in Control and Information Sciences, Springer-Verlag Berlin, Heidelberg, 1987.
[19]S. X. Yang and Q. H. Meng, “Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach,” IEEE Trans. Neural Networks, vol. 14, no. 6, pp. 1541-1552, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top